Изменения

Перейти к: навигация, поиск

Генерация изображения по тексту

33 байта убрано, 19:48, 12 января 2021
м
TextKD-GAN add ref
=== TextKD-GAN ===
Генерация текста представляет особый интерес во многих приложениях [https://en.wikipedia.org/wiki/Neuro-linguistic_programming нейролингвистического программирования] (англ. ''neuro-linguistic programming, NLP''), таких как [https://en.wikipedia.org/wiki/Machine_translation машинный перевод], моделирование языка и обобщение текста. [[Generative Adversarial Nets (GAN) | Генеративные состязательные сети]] достигли замечательного успеха в создании высококачественных изображений в [[Компьютерное зрение | компьютерном зрении]], и в последнее время GANs также вызвали большой интерес со стороны сообщества NLP. Однако достижение подобного успеха в NLP было бы более сложным из-за дискретности текста. В данной статье<ref>[https://arxiv.org/pdfabs/1905.01976Md. Akmal H. and Mehdi R.pdf {{---}} TextKD-GAN: Text Generation using KnowledgeDistillation and Generative Adversarial Networks, 2019]</ref> вводится метод, использующий дистилляцию знаний для эффективного использования настройку GAN для генерации текста. Также показываются, как [[Автокодировщик | автоэнкодерыавтокодировщики]] (англ. ''autoencoders, AEs'') могут быть использованы для обеспечения непрерывного представления предложений, которое в свою очередь представляет собой гладкое представление, присваивающее ненулевые вероятности более чем одному слову.
TextKD-GAN представляет из себя решение для основного узкого места использования генеративных состязательных сетей для генерации текста с дистилляцией знаний: метод, переносящий знания смягченного вывода модели преподавателя в модель студента. Решение основано на AE (учителе), чтобы получить гладкое представление реального текста. Это гладкое представление подается в дискриминатор TextKD-GAN вместо обычного однократного представления. Генератор (студент) пытается изучить многообразие смягченного гладкого представления AE. TextKD-GAN, в конечном итоге, будет превосходить обычный генератор текста на основе GAN, который не нуждается в предварительной подготовке.
[[Файл:TextKD-GAN_Model.png|thumb|right|x400px|Модель TextKD-GAN для генерации текста.]]
В общепринятом текстовом подходе к дискриминации , реальные и сгенерированные входные данные дискриминатора будут иметь разные типы ([https://en.wikipedia.org/wiki/One-hot one-hot] & и [https://en.wikipedia.org/wiki/Softmax_function softmax]), и он может обыкновенно отличить их друг от друга. Один из способов избежать этой проблемы состоит в том, чтобы получить непрерывное гладкое получении непрерывно гладкого представление слов, (а не их one-hot представлениепредставления), и обучить дискриминатор обучении дискриминатора различать непрерывные представленияих. Здесь используется общепринятый автоэнкодер атокодировщик(учитель), чтобы заменить one-hot представление softmax-реконструированным выходом, который является гладким представлением, дающим меньшую дисперсию градиентов. Предложенная модель изображена на рисунке справа. Как видно, вместо one-hot представления реальных слов смягченный реконструированный выход автоэнкодера атокодировщика подается на вход дискриминатору. Эта техника значительно усложняет различение для самого дискриминатора. Генератор GAN (студент) с softmax выходом пытается имитировать распределение выходного сигнала автоэнкодера атокодировщика вместо общепринятого one-hot представления.
Обучение модели происходит следующим образом: AE и TextKD-GAN обучаются одновременно. Чтобы добиться этого, необходимо раздробить целевую функцию на три члена:
89
правок

Навигация