Изменения

Перейти к: навигация, поиск

Генерация изображения по тексту

Нет изменений в размере, 19:49, 12 января 2021
TextKD-GAN: "дискриминации" -> "распознавании"
[[Файл:TextKD-GAN_Model.png|thumb|right|x400px|Модель TextKD-GAN для генерации текста.]]
В общепринятом текстовом подходе к дискриминациираспознавании, реальные и сгенерированные входные данные дискриминатора будут иметь разные типы ([https://en.wikipedia.org/wiki/One-hot one-hot] и [https://en.wikipedia.org/wiki/Softmax_function softmax]), и он может обыкновенно отличить их друг от друга. Один из способов избежать этой проблемы состоит в получении непрерывно гладкого представление слов (а не one-hot представления), и обучении дискриминатора различать их. Здесь используется общепринятый атокодировщик(учитель), чтобы заменить one-hot представление softmax-реконструированным выходом, который является гладким представлением, дающим меньшую дисперсию градиентов. Предложенная модель изображена на рисунке справа. Как видно, вместо one-hot представления реальных слов смягченный реконструированный выход атокодировщика подается на вход дискриминатору. Эта техника значительно усложняет различение для самого дискриминатора. Генератор GAN с softmax выходом пытается имитировать распределение выходного сигнала атокодировщика вместо общепринятого one-hot представления.
Обучение модели происходит следующим образом: AE и TextKD-GAN обучаются одновременно. Чтобы добиться этого, необходимо раздробить целевую функцию на три члена:
81
правка

Навигация