Изменения

Перейти к: навигация, поиск
Нет описания правки
Где $p_t$ 2D ключевая точка лица $F_t$.
[[Файл:Deep_fake_view.png|right|thumb|450px|Рисунок 3. Карта переноса точек <ref name=orig>[https://arxiv.org/pdf/1908.05932.pdf]</ref>]]]
== Вписывание лица ==
Поскольку из-за разницы в углах поворота или разной прически сегментированные маски нужных и исходных изображений могут отличаться видимыми регионами. Например, у одной маски сегментации длинная прическа, которая закрывает пол лица, а у второй маски сегментации класс волос отсутствует. Поэтому нам необходимо "дорисовать" или "стереть" участки, которые не могут быть перенесены напрямую.
Чтобы решить данную задачу мы обучим еще одну модель $G_c$. $G_c$ принимает в себя лицо $F_s$, такое что все необходимые участки будут дорисованы, а ненужные удалены.
Функция потерь такой сети {{---}}}
$\displaystyle Loss(G_c) = \lambda_{rec}Loss_{rec}(I_c, I_t) + \lambda_{adv}Loss_{adv}.$
== Данные для обучения и процесс обучения ==
[[Файл:Deep_fake_pipeline.png|thumb|right|450px|Рисунок 4. Общая схема алгоритма <ref name=orig>[https://arxiv.org/pdf/1908.05932.pdf]</ref>]]]
В качестве обучающего множества можно использовать множество дата сетов с размеченными лицами, одним из таких служит IJB-C <ref name=ijbc>[https://noblis.org/wp-content/uploads/2018/03/icb2018.pdf IJB-C]</ref>. На нем обучается генератор $G_r$. Данный дата сет состоит из более чем $11$ тысяч видео, $5500$ из которых высокого качества. При обучении кадры из $I_s$ и $I_t$ берутся из двух случайных видео. Так же для начального шага нам был необходим perceptual loss<ref name=perceptual>[https://arxiv.org/abs/1603.08155 Perceptual Losses for Real-Time Style Transfer and Super-Resolution]</ref>, он может быть получен, обучив VGG-19<ref name=vgg>[https://arxiv.org/abs/1409.1556 Very Deep Convolutional Networks for Large-Scale Image Recognition]</ref> модель или взяв готовую обученную на ImageNet<ref name=imagenet>[http://www.image-net.org/ ImageNet]</ref> или VGGFace2<ref name=vggface2>[https://arxiv.org/abs/1710.08092 VGGFace2: A dataset for recognising faces across pose and age]</ref>, второй дата сет предпочтительный, поскольку для его обучения используются только лица.
30
правок

Навигация