Изменения
→Процессоры
Из-за медлительности телефонов развитие машинного обучения на телефонах началось совсем недавно. Раньше все данные хранились на серверах компаний, [http://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%B0_%D0%B8_%D0%B5%D1%91_%D0%B2%D1%8B%D0%B1%D0%BE%D1%80 выбор модели] был очень широк, и, с точки зрения безопасности, это было плохо. Однако теперь IT-гиганты, такие, как Google, переходят на модель [https://ai.googleblog.com/2017/04/federated-learning-collaborative.html федеративное федеративного обучения]. Понятно, что обычный телефон не может себе позволить обучаться на тяжелых моделях, таких как, например, нейронные сети. Однако существуют модели, которые потребляют очень малое количество памяти и времени на обучение. В основном именно они используются, когда нет соединения с сервером.
Однако машинное обучение стало настолько актуальным, что производители процессоров задумались о том, что бы создавать процессоры, некоторые чипы которых заточены под задачи машинного обучения.