462
правки
Изменения
→Подсчет клеток на основе сверточных сетей
=== Подсчет клеток на основе сверточных сетей ===
[[Файл:FCRN-A_and_FCRN_B.png|425px|thumb|right|Архитекутры сетей FCRN-A и FCRN-B для построения карт плотности<ref>[https://www.robots.ox.ac.uk/~vgg/publications/2016/Xie16/xie16.pdf Weidi Xie {{---}} Microscopy cell counting and detection with fully convolutional regression networks, 2016]</ref>.]]
К автоматическому подсчету клеток можно подойти с разных сторон. Первый подход основан на детекции с предварительной сегментацией изображения. Процесс сегментации сам по себе сложен и существует более эффективный способ. В его основе лежит регрессия и оценка плотности без непосредственной детекции и сегментации. По карте плотности можно с хорошей точностью оценить количество клеток. Рассмотрим, как она строится.
Особенностью изображений микроскопии является то, что клетки в большинстве случаев имеют размер значительно меньший, чем размер изображения, то есть нет необходимости использовать сложные глубокие сети, которые способны выучить высоко семантическую информацию. Поэтому используются сети с архитектурой FCRN-A или FCRN-B. Различия в архитектурах состоят в размерах ядер и количестве слоев. Такие сети на выходе дают карту плотности клеток.
Такой подход позволяет проводить непрерывное обучение с изображениями произвольных размеров, что важно в том числе для покадровой съемке и изучением длительных процесоов. Он также обеспечивает интуитивное понимание представлений функций из FCRN, визуализируя, в какой степени информация была закодирована на разных уровнях.
=== Распознавание перекрывающихся объектов на основе деревьев экстремальных областей ===
[[Файл:Extremal Region Trees.png|left|250px|thumb|Получающаяся древовидная структура<ref>[http://sites.skoltech.ru/app/data/uploads/sites/25/2014/11/MIA15.pdf Carlos Arteta {{---}} Detecting Overlapping Instances in Microscopy Images Using Extremal Region Trees, 2016]</ref>.]]