238
правок
Изменения
→Введение
*модели, которые занимаются и детекцией, и распознаванием (end-to-end модели).
При дальнейшем чтении статьи могут возникнуть вопросы относительно методов измерения точности моделей. Абсолютное большинство исследователей выбирают [[:Оценка_качества_в_задачах_классификации|F-меру]] в качестве меры точности (естественно, совместно с precision и recall). В задаче распознавания текста precision {{---}} это количество правильно распознанных слов из общего числа слов, которые модель сумела найти на изображениях; recall {{---}} это количество правильно распознанных слов из всех слов, представленных в наборе данных. В задаче детекции текста для различных наборов данных используются различные протоколы оценки, с помощью которых определяется recall и precision, и только потом высчитывается F-мера.
== Наборы данных ==