Изменения

Перейти к: навигация, поиск

Генерация изображения по тексту

398 байт убрано, 17:42, 21 января 2021
Remove sentence from issue #25
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:StackGAN++-1.png|thumb|alt=Архитектура StackGAN++|x350px|center|Рисунок 7.<ref name="StackGAN++"/> Архитектура StackGAN++.]]</div>
Несмотря на успех, GAN, как известно, сложно обучить. Тренировочный процесс обычно нестабилен и чувствителен к выбору [[Настройка гиперпараметров | гиперпараметров]]. В нескольких статьях утверждалось, что нестабильность частично связана с несвязными носителями распределения данных и подразумеваемого модельного распределения. Эта проблема становится более серьезной при При обучении GAN генерировать изображения с высоким разрешением (например, 256x256), потому что вероятность того, что распределение изображений и распределение моделей будет совместно использовать один и тот же носитель в многомерном пространстве, очень мала. Более того, обычным явлением сбоя при обучении GAN является '''коллапс режима''' (англ. ''mode collapse''), когда многие из сгенерированных выборок содержат одинаковый цвет или узор текстуры.
Предлагается продвинутая многоэтапная генеративно-состязательная сетевая архитектура StackGAN-v2 как для условных, так и для безусловных генеративных задач. StackGAN-v2 имеет несколько генераторов, которые разделяют между собой большинство своих параметров в древовидной структуре. Входные данные сети можно рассматривать как корень дерева, а изображения разного масштаба генерируются из разных ветвей дерева. Конечная цель генератора на самой глубокой ветви {{---}} создание фотореалистичных изображений с высоким разрешением. Генераторы в промежуточных ветвях имеют прогрессивную цель создания изображений от малых до больших для достижения конечной цели. Вся сеть совместно обучается аппроксимировать различные, но сильно взаимосвязанные распределения изображений в разных ветвях. Кроме того, используется '''регуляризация согласованности цвета''' (англ. ''color-consistency regularization''), чтобы генераторы могли генерировать более согласованные образцы для разных масштабов.
135
правок

Навигация