Изменения

Перейти к: навигация, поиск

Обсуждение участника:Qrort

29 байт добавлено, 23:39, 21 января 2021
Кратковременные астрономические явления
=== Изучение астрономических явлений===
==== Кратковременные астрономические явления ====
Ввиду невозможности круглосуточно наблюдать за данными, поступающими с телескопов, вполне вероятной является возможность пропустить или не заметить появление сверхновой или активность [https://ru.wikipedia.org/wiki/Переменная_звезда переменной звезды]. Как следствие, естественной целью оказывается обработка таких событий круглосуточно, в автоматическом режиме.
Для классификации астрономических явлений необходимо иметь данные о каком-то участке неба на протяжении какого-то времени. Существуют два подхода, связанные с обработкой последовательностей изображений неба, связанные с машинным обучением:
* Использовать алгоритмы, способные обрабатывать последовательности объектов, например, [[ Рекуррентные нейронные сети | рекуррентные нейронные сети ]], или, в частности, [[ Долгая краткосрочная память | LSTM ]]<ref>arXiv:1902.03620 [astro-ph.HE]</ref>, которые можно обучить на нескольких последовательных результатах измерения излучения участка неба. В вышеупомянутой работе, к примеру, объектами являются данные о гамма-излучении на протяжении 20 временных интервалов.
[[Файл:LSTMforTransients.png|600px|thumb|center|Архитектура рекуррентной нейронной сети для классификации кратковременных событий]]
 
====Астрономические феномены====
Нейронные сети можно использовать для определения и классификация стадий астрономических феноменов галактик <ref>Huertas-Company, M., Primack, J. R., Dekel, A.,et al. 2018, ApJ, 858, 114</ref>, связанных со звездообразованием в них. Особенностью таких задач является необходимость генерировать для них искусственные наборы объектов для обучения ввиду недостаточного количества наблюдаемых феноменов такого типа в реальных данных.
Анонимный участник

Навигация