135
правок
Изменения
Fix new issue #3
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:StackGAN++-1.png|thumb|alt=Архитектура StackGAN++|x350px|center|Рисунок 7.<ref name="StackGAN++"/> Архитектура StackGAN++.]]</div>
Несмотря на успех, GAN, как известно, сложно обучить. Тренировочный процесс обычно нестабилен и чувствителен к выбору [[Настройка гиперпараметров | гиперпараметров]]. При обучении GAN генерировать изображения с высоким разрешением (например, 256x256), вероятность того, что распределение изображений и распределение моделей будет совместно использовать один и тот же носитель в многомерном пространстве, очень мала. Более того, обычным явлением сбоя при обучении GAN является '''коллапс режима''' [[Generative_Adversarial_Nets_(GAN)#Mode_Collapse|схлопывание мод распределения]] (англ. ''mode collapse''), когда многие из сгенерированных выборок содержат одинаковый цвет или узор текстуры.
Предлагается продвинутая многоэтапная генеративно-состязательная сетевая архитектура StackGAN-v2 как для условных, так и для безусловных генеративных задач. StackGAN-v2 имеет несколько генераторов, которые разделяют между собой большинство своих параметров в древовидной структуре. Входные данные сети можно рассматривать как корень дерева, а изображения разного масштаба генерируются из разных ветвей дерева. Конечная цель генератора на самой глубокой ветви {{---}} создание фотореалистичных изображений с высоким разрешением. Генераторы в промежуточных ветвях имеют прогрессивную цель создания изображений от малых до больших для достижения конечной цели. Вся сеть совместно обучается аппроксимировать различные, но сильно взаимосвязанные распределения изображений в разных ветвях. Кроме того, используется '''регуляризация согласованности цвета''' (англ. ''color-consistency regularization''), чтобы генераторы могли генерировать более согласованные образцы для разных масштабов.
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:Stacking_VAE&GAN.png|thumb|alt=Архитектура Stacking VAE and GAN|x350px|center|Рисунок 13.<ref name="CVAE&GAN"/> Архитектура Stacking VAE and GAN.]]</div>
[[Вариационный автокодировщик| VAE]] имеет более стабильный выход чем GAN без [[Generative Adversarial Nets Generative_Adversarial_Nets_(GAN)#Улучшение обучения GANMode_Collapse|схлопывания мод распределения]] (англ. ''mode collapse''), это можно использовать для достоверной подборки распределения и выявления разнообразия исходного изображения. Однако он не подходит для генерации изображений высокого качества, т. к. генерируемые VAE изображения легко размываются. Чтобы исправить данный недостаток архитектура включает два компонента (рис. 13):
*Контекстно-зависимый вариационный кодировщик (англ. ''conditional [[Вариационный автокодировщик| VAE]], CVAE'') используется для захвата основной компоновки и цвета, разделяя фон и передний план изображения.
*[[Generative Adversarial Nets (GAN)|GAN]] уточняет вывод CVAE с помощью состязательного обучения, которое восстанавливает потерянные детали и исправляет дефекты для создания реалистичного изображения.