Изменения
Нет описания правки
# Постройте экспоненциальную производящую функцию для перестановок, состоящих из нечетных циклов.
# Докажите, что для четного $n$ количество перестановок, в которых все циклы четные, и количество перестановок, в которых все циклы нечетные, совпадают.
# "Произведение с коробочкой": Обозначим $C = A^{\square} \times B$, как множество упорядоченных пар объектов из $A$ и $B$ со всеми возможными нумерациями, где атом с номером $1$ принадлежит первому элементу пары. Выведите формулу для $C_nc_n$.
# Докажите, что если $C = A^{\square} \times B$, то $C'(z) = A'(z) \cdot B(z)$.
# Комбинаторный объект "двоичная куча". Рассмотрим помеченные двоичные деревья, где каждая вершина имеет двух детей, левого и правого (любое из этих поддеревьев может быть пустым), а также число в родителе вершины меньше числа в самой вершине (так, вершина с номером 1 --- всегда корень). Используя комбинаторную конструкцию "произведение с коробочкой", составьте и решите уравнение на экспоненциальную производящую функцию для двоичных куч.
# Обозначим за $G(t)$ экспоненциальную производящую функцию всех помеченных графов. Чему равно $g_n$? Выразите производящую функцию связных помеченных графов, используя $G(t)$.