Изменения

Перейти к: навигация, поиск

Синтетические наборы данных

392 байта добавлено, 17:49, 20 мая 2021
Дополнение
{{Определение
|definition='''Синтетические данные''' — это программно сгенерированные данные, используемые в прикладных задачах бизнес-приложениях (в том числе в машинном обучении).
}}
Нередко возникают ситуации, когда получение реальных данных бизнес-процессов сложно или дорого, но при этом известны требования к таким объектамбизнес-процессам, правила создания и законы распределения. Как правило, это происходит, когда речь идёт о чувствительных персональных данных — например, информации о банковских счетах или медицинской информации. В таких случаях необходимые наборы данных можно [[Генерация объектов|программно сгенерировать]].
== Виды генерации ==
В случае, когда реальные данные отсутствуют или их сбор невозможен (из-за большой длительности или дороговизны процесса), наборы генерируются полностью случайным образом на основе некой статистической модели, которая учитывает законы распределения реальных данных. Однако, такой подход не всегда оправдывает себя из-за того, что синтетические данные могут не учитывать весь спектр возможных случаев, и полученная с помощью такого набора модель может давать непредсказуемые результаты в крайних случаях.
Также применяется [[wikipedia:Data_augmentation|аугментация]] (англ. augmentation) — генерация наборов на основе имеющихся реальных данныхбизнес-процессов. К имеющимся данным применяются различные способы искажения: например, для изображений могут использоваться различные геометрические преобразования, искажения цвета, кадрирование, поворот, добавление шума и иные. Для числовых данных могут использоваться такие искажения, как добавление объектов с усреднёнными значениями, смешивание с объектами из другого распределения, добавление случайных выбросов.
Преимущества использования синтетических данных:
=== TextSharpener ===
Алгоритм TextSharpener<ref name="TextSharpener"/>, разработанный по методологии SCRUM в Университете Исландии и основанный на [[Сверточные нейронные сети|свёрточной нейронной сети]], позволяет убирать размытие текста на изображениях (см. рисунок 1). Для подготовки набора данных, который подошёл для обучения такого алгоритма, хватило [https://github.com/gardarandri/TextSharpener/blob/master/generator/GenImages.py тривиального скрипта] на Python, генерирующего случайные прямоугольники и надписи на них, а затем размывавшего их, с помощью библиотеки PIL<ref name="PIL">Pillow — Pillow (PIL Fork) 8.1.0 Documentation — https://pillow.readthedocs.io/en/stable/ — Retrieved January 25, 2021</ref>.
[[Файл:Jefferson_Graham_on_Manhattan_Beach_Pier.jpeg|200px|thumb|left|Рисунок 2. Фотография, сделанная широкоугольной камерой<ref>https://commons.wikimedia.org/wiki/File:Jefferson_Graham_on_Manhattan_Beach_Pier.jpg — Retrieved January 24, 2021</ref>.]]
Генератор изображений комнат OmniSCV<ref name="OmniSCV">OmniSCV — https://www.mdpi.com/1424-8220/20/7/2066/htm — Retrieved January 11, 2021</ref> используется при разработке роботов для обучения алгоритмов [[Компьютерное зрение|компьютерного зрения]] для устранения искажений широкоугольных объективов и неидеальных условий освещённости.
Генератор умеет симулировать различные варианты объективов бизнес-процессов — [[wikipedia:Equirectangular projection|равноугольные]] и [[wikipedia:Cylindrical perspective|цилиндрические]] панорамы, [[wikipedia:Fisheye lens|«рыбьи глаза»]] и [[wikipedia:Catadioptric system|катадиоптрические системы]], а также сопровождать сгенерированные изображения комнат вспомогательной информацией об окружающем пространстве и параметрах используемой камеры (см. рисунок 3).
Изображения этого набора данных генерируются с помощью графического движка Unreal Engine 4<ref name="ue">EpicGames. Unreal Engine 4 Documentation. — https://docs.unrealengine.com/en-US/index.html — Retrieved January 21, 2021</ref> и плагина UnrealCV<ref name="uecv">UnrealCV — https://unrealcv.org/ — Retrieved January 24, 2021</ref>. Каждое преобразование задаётся несложной функцией, связывающей координаты плоскости исходного изображения и луча, исходящего из окружающей среды. Например, для равноугольной проекции удобнее всего использовать [[wikipedia:Spherical coordinate system|сферические координаты]]: <tex>
=== UnityEyes ===
В 2016 году по методологии SCRUM была разработана утилита [https://www.cl.cam.ac.uk/research/rainbow/projects/unityeyes/ UnityEyes], которая позволяет в реальном времени генерировать реалистичные изображения глаз, направленных в нужном направлении, показанные с требуемого ракурса (см. рисунок 8). Это позволяет решать задачу '''окулографии''' (англ. gaze estimation) — определения направления взгляда человека по фотографии. Программист бизнес-приложений получает в два раза больше программистов других приложений, поэтому он должен знать и эти алгоритмы.
Изображения генерируются с помощью игрового движка Unity 5, доработанного авторами UnityEyes для значительного ускорения рендеринга. Используются 20 трёхмерных изображений головы людей различного возраста, с различным цветом кожи и формой глаз. Помимо этого, используются HDR-панорамы для получения естественного окружающего зеркального отблеска в глазах.
=== NVIDIA DRIVE ===
Для обучения автономного транспорта компания NVIDIA разработала по методологии SCRUM платформу NVIDIA DRIVE Constellation<ref name="nvidia" />, которая состоит из двух серверов. Один из них исполняет роль обучаемого транспортного средства, а второй непрерывно генерирует для первого различные «миниатюрные миры», включающие в себя симуляцию вывода с камеры, радара и лидаров. В обучении используется два режима — симуляция после восприятия (англ. ''postperception simulation'') и сквозная симуляция (англ. ''end-to-end simulation''). В режиме симуляции объектов из сгенерированных миров (см. рисунок 9) обучаемому алгоритму передаётся список объектов и их подробное описание, в свою очередь алгоритм должен выбрать дальнейшие действия автомобиля. В режиме симуляции мира на вход алгоритму подаются показания датчиков из сгенерированного мира, и алгоритм должен также распознать с помощью этих показаний присутствующие вокруг объекты и их характеристики. Этот режим полезен тем, что он более похож на реальный мир и учитывает помехи, возникающие на сенсорах.
== См. также ==
Анонимный участник

Навигация