Изменения

Перейти к: навигация, поиск

Практики реализации нейронных сетей

5 байт убрано, 18:29, 6 августа 2021
Линейная функция
# Рассмотрим нейронную сеть с несколькими слоями с данной функцией активации. Так как для каждого слоя выходное значение линейно, то они образуют линейную комбинацию, результатом которой является линейная функция. То есть финальная функция активации на последнем слое зависит только от входных значений на первом слое. А это значит, что любое количество слоев может быть заменено всего одним слоем, и, следовательно, нет смысла создавать многослойную сеть.
Главное отличие линейной функции от остальных в том, что ее область определения значений не ограничена: <tex>(-\infty; +\infty)</tex>. Следовательно, ее нужно использовать, когда выходное значение нейрона должно <tex>\in \mathbb R</tex>, а не ограниченному интервалу.
[[Файл:SigmoidFunction.jpg|200px|thumb|right|Рис 5. Сигмоидная функция]]
 
===Сигмоидная функция===
Сигмоидная функция (англ. ''sigmoid function''), которую также называет логистической (англ. ''logistic function''), является гладкой монотонно возрастающей нелинейной функцией: <tex>\sigma(z) = \dfrac1{1+e^{-z}}</tex>. И так как эта функция нелинейна, то ее можно использовать в нейронных сетях с множеством слоев, а также обучать эти сети методом обратного распространения ошибки. Сигмоида ограничена двумя горизонтальными асимптотами <tex>y = 1</tex> и <tex>y = 0</tex>, что дает нормализацию выходного значения каждого нейрона. Кроме того, для сигмоидной функции характерен гладкий градиент, который предотвращает "прыжки" при подсчете выходного значения. Помимо всего этого, у этой функции есть еще одно преимущество, для значений <tex>x > 2</tex> и <tex>x < -2</tex>, <tex>y</tex> "прижимается" к одной из асимптот, что позволяет делать четкие предсказания классов.
Анонимный участник

Навигация