244
правки
Изменения
Нет описания правки
# Даны числа $d_1, d_2, \ldots, d_n$. Докажите, что количество деревьев, в которых $deg(1) = d_1$, ..., $deg(n) = d_n$ равно $\frac {(n-2)!} {\Pi (d_i - 1)!}$
# Обобщение формулы Кэли. Пусть дан полный граф, и остовный лес в нём, компоненты связности леса состоят из $c_1, c_2, \ldots, c_k$ вершин. Докажите, что число способов добавить ребра, чтобы получилось остовное дерево, равно $c_1 c_2 \ldots c_k (c_1+c_2+\ldots+c_k)^{k-2}$.
# Для $n \ge 2$, найдите формулу для количества остовных деревьев $K_n$, содержащих ребро $1 -- 2$,
# Обобщите матричную теорему Кирхгофа для следующей задачи: дан ориентированный граф и вершина $r$, нужно найти количество корневых деревьев с корнем в $r$.
# Сколько раз необходимо оторвать карандаш от бумаги, чтобы нарисовать граф $K_n$, не проводя никакое ребро два раза, в зависимости от $n$?