Изменения

Перейти к: навигация, поиск

Локальная теорема о неявном отображении

2790 байт добавлено, 05:46, 3 июня 2011
Нет описания правки
<tex>V_{\delta}(\overline{x_0}),~W_{\delta}(\overline{y_0})</tex> такие, что <tex>T_{\overline y}'(\overline x, \overline y) \le \frac 12,~\forall \overline y',\overline y'' \in W_{\delta}(\overline{y_0}),~\forall\overline x\in V_{\delta}(\overline{x_0})</tex><br>
По неравенству Лагранжа <tex>\|T(\overline x,\overline y'')-T(\overline x,\overline y')\| \le \sup\limits_{\overline z \in \{y',y''\}}\|T_{\overline y}'(\overline x,\overline z)\|\|\overline y''-\overline y'\|</tex>. Но по выбору шаров этот <tex>\sup \le \frac 12</tex> и, таким образом, в наших условиях <tex>\|T(\overline x,\overline y'')-T(\overline x,\overline y')\| \le \frac 12 \|\overline y''-\overline y'\|</tex>.
<b>2 этап:</b> На первом этапе найден коэффициент сжатия: <tex>\frac 12</tex>. Если проверить для <tex>T</tex> условия теоремы Банаха по <tex>\overline y</tex> в пределах некоторых окрестностей начальных данных, то у <tex>T</tex> окажется единственная неподвижная точка, следовательно, она и будет значением неявного отображения и теорема будет доказана.<br>
<tex>\forall\overline x\in V_{\delta}(\overline{x_0}),~\forall \overline y, \in W_{\delta}(\overline{y_0})</tex><br>
<tex>\overline{y_0}=T(\overline{x_0},\overline{y_0})</tex> (<tex>x_0,y_0</tex> — начальные данные). Тогда <tex>\|T(\overline x,\overline y)-y_0\|=\|T(\overline x,\overline y)-T(\overline {x_0},\overline {y_0})\|=\|(T(\overline x,\overline y)-T(\overline x,\overline {y_0}))+(T(\overline x,\overline {y_0})-T(\overline {x_0},\overline {y_0}))\|\le\|T(\overline x,\overline y)-T(\overline x,\overline {y_0})\|+\|T(\overline x,\overline {y_0})-T(\overline {x_0},\overline {y_0})\|\le\frac 12 \|\overline y-\overline{y_0}\|+\|T(\overline x,\overline {y_0})-T(\overline {x_0},\overline {y_0})\|</tex><br>
По непрерывности <tex>T</tex> вторая норма разности <tex>\xrightarrow{\overline x \to \overline {x_0}}0</tex>. Полагая в определении непрерывности <tex>\varepsilon=\frac{\delta}2</tex> (<tex>\delta</tex> у нас уже было выбрано), подбираем <tex>\delta':0<\delta'<\delta</tex>, так, чтобы <tex>\|\overline x - \overline{x_0}\|\le\delta' \Rightarrow \|T(\overline x,\overline{y_0})-T(\overline {x_0},\overline{y_0})\|\le\frac{\delta}2</tex>. <tex>\delta'</tex> не зависит от <tex>y</tex>!<br>
<tex>\overline x\in V_{\delta'}(\overline{x_0}),~\forall \overline y, \in W_{\delta}(\overline{y_0}): \|T(x,y)-y_0\|\le\frac 12\|y-overline{y_0}\|+\frac 12\delta\le\frac 12\delta+\frac 12\delta=\delta:T(x,y)\in W_{\delta}(\overline{y_0})</tex><br>
<tex>\forall\overline x\in V_{\delta}(\overline{x_0}),~\forall \overline y, \in W_{\delta}(\overline{y_0}).~T(\overline x,\cdot)\colon W_{\delta}(\overline{y_0})\to W_{\delta}(\overline{y_0})</tex> является сжатием с <tex>q=\frac 12</tex>, по теореме Банаха <tex>\exists y^*\in W_{\delta}(\overline{y_0}):\overline y^*=T(\overline x,\overline y^*)\Longleftrightarrow f(\overline x,\overline y^*)=0^m</tex>. В силу единственности такой точки неявное отображение определено. Пыщь-пыщь, щастье-радость!
}}
<references/>
315
правок

Навигация