Изменения
Отмена правки 9818 участника 192.168.0.2 (обсуждение)
Ещё одним возможным приложением неявных отображений может служить задача об условном экстремуме.
<tex>z=f(\overline x, \overline y),~\overline x=(x_1,\dots x_n),~\overline y=(y_1,\dots y_m)</tex>. Пусть заданы «уравнения связи» в количестве m:
<tex>(\overline{x_0},\overline{y_0})</tex> — '''условный максимум''' функции <tex>f</tex>, если для всех <tex>\overline x \approx \overline{x_0},~\overline y \approx \overline{y_0}</tex> и <tex>(\overline x,\overline y)</tex>, удовлетворяющих уравнениям связи, выполняется неравенство <tex>f(\overline x,\overline y)\le f(\overline {x_0},\overline {y_0})</tex>. Если же <tex>f(\overline x,\overline y)\ge f(\overline {x_0},\overline {y_0}),~(\overline{x_0},\overline{y_0})</tex> — '''условный минимум'''.
Допустим все <tex> g_i </tex>, как и их частные производные — непрерывны, и матрица Якоби должна быть обратимой. Тогда <tex>\overline y</tex> выражается через <tex>\overline x</tex> в некоторой окрестности <tex>(\overline {x_0},\overline {y_0})</tex>.
Мы получили систему уравнений для полученных точек, похожих на условный экстремум; которую надо решать вместе с уравнениями связи.
На самом деле, этому можно придать более удобную форму, придуманную Лагранжем (метод множителей Лагранжа) (но математической новизны в нём нет!)