Теорема Лагранжа
Теорема (Лагранж): |
|
Доказательство: |
[math]\triangleright[/math] |
Пусть [math]G[/math] — конечная группа, а [math]H[/math] — ее подгруппа. Любой элемент [math]G[/math] входит в некоторый смежный класс по [math]H[/math] ([math]a[/math] входит в [math]aH[/math]). Мощность каждого класса равна [math]\vert H\vert[/math], т.к. отображение [math]x\rightarrow a\cdot x биективно[/math]. Таким образом, вся G распадается на непересекающиеся смежные классы одинаковой мощности. Отсюда очевидно, что [math]\vert G\vert[/math] делится на [math]\vert H\vert[/math]. |
[math]\triangleleft[/math] |
Следствие: [math]a^{\vert G\vert}=e[/math]. Достаточно рассмотреть циклическую подгруппу [math]H=\langle a\rangle[/math]: ее порядок равен порядку элемента [math]a[/math], но [math]a^{\vert G\vert}=a^{\frac{\vert G\vert}{\vert H\vert}\vert H\vert}=(a^{\vert H\vert})^{\frac{\vert G\vert}{\vert H\vert}}=e[/math].
Следствие:(теорема Ферма) Рассматривая в качестве [math]G[/math] группу [math]\mathbb{Z}_p[/math], получаем при [math]a\lt p[/math]:
[math]a^{\vert \mathbb{Z}_p\vert}=a^{p-1}\equiv 1\mod p \Leftrightarrow a^p\equiv a\mod p[/math]
Ссылки
Доказательство