Настройка глубокой сети — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Способы настройки параметров)
Строка 40: Строка 40:
  
 
== Способы настройки параметров ==
 
== Способы настройки параметров ==
 +
[[File:basins.png|450px|thumb|right|Рисунок 4. Сравение мотификаций метода градиентного спуска на ландшафте "бассейны и стены".]]
 +
[[File:wolby.png|450px|thumb|right|Рисунок 5. Сравение мотификаций метода градиентного спуска на "шатком" ландшафте.]]
 +
Ниже представлены различные вариации градиентного спуска (более подробное сравнение, применительно к данной задаче <ref>[https://habr.com/post/318970/ Методы оптимизации нейронных сетей, Habr]</ref>). Градиентный спуск — итеративный алгоритм поиска минимума или максимума функции, метриками качества алгоритма этого семейства методов являются скорость сходимости и сходимость в глобальный оптимум. Методы имеют различные преимущества на различных функциях. Так например на рисунке 4 из локального минимума методы adam и nag не могут достигнуть глобального, а в случае "шаткого" ландшафта (рисунок 5) эти методы сходятся быстрее.
  
Ниже представлены различные вариации градиентного спуска (более подробное сравнение, применительно к данной задаче <ref>[https://habr.com/post/318970/ Методы оптимизации нейронных сетей, Habr]</ref>).
+
* Стохастический градиентный спуск<ref>[http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D1%81%D1%82%D0%BE%D1%85%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE_%D0%B3%D1%80%D0%B0%D0%B4%D0%B8%D0%B5%D0%BD%D1%82%D0%B0 Метод стохастического градиента]</ref> заключается в том, что алгоритм делает шаг постоянной величины в направлении, указанном градиентом в текущей точке: <tex>w^{(0)}</tex> — начальные весы сети, <tex>w^{(k+1)}=w^{(k)}-\mu\frac{\partial L(w^{(k)})}{\partial w}</tex>;
  
* Стохастический градиентный спуск<ref>[http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D1%81%D1%82%D0%BE%D1%85%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE_%D0%B3%D1%80%D0%B0%D0%B4%D0%B8%D0%B5%D0%BD%D1%82%D0%B0 Метод стохастического градиента]</ref>: <tex>w^{(0)}</tex> — начальные весы сети, <tex>w^{(k+1)}=w^{(k)}-\mu\frac{\partial L(w^{(k)})}{\partial w}</tex>;
 
  
* Momentum <ref>[https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum Momentum, Wikipedia]</ref>: <tex> \Delta w:=\alpha \Delta w-\eta \nabla Q_{i}(w)</tex>, <tex> w:=w+\Delta w</tex> или <tex> w:=w-\eta \nabla Q_{i}(w)+\alpha \Delta w</tex>;
+
* Модификация Momentum <ref>[https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum Momentum, Wikipedia]</ref> запоминает скорость на предыдущем шаге и добавляет в <tex>\alpha</tex> раз меньшую величину на следующем шаге: <tex> \Delta w:=\alpha \Delta w-\eta \nabla Q_{i}(w)</tex>, <tex> w:=w+\Delta w</tex> или <tex> w:=w-\eta \nabla Q_{i}(w)+\alpha \Delta w</tex>;
  
* NAG (Nesterov accelerated gradient)<ref>[https://jlmelville.github.io/mize/nesterov.html#nag Nesterov accelerated gradient]</ref>: <tex> w^{(k+1)} = w^{(k)}-v^{(k)}; v^{(k+1)}=\gamma v^{(k)}+\mu\frac{\partial L(w^{(k)}-v^{(k)})}{\partial w}</tex>
 
  
*Adagrad<ref>[http://akyrillidis.github.io/notes/AdaGrad AdaGrad]</ref>: <tex>g_{i,(k)}=\frac{\partial L(w_i^{(k)})}{\partial w_i}, w_i^{(k+1)}=w_i^{(k)}-\frac{\mu}{\sqrt{G^{(k)}_i,i+\epsilon}}g_{i,(k)}</tex>, где G — диагональная матрица, элементы которой, суммы квадратов координат градиента к k-ой итерации алгоритма;
+
* NAG (Nesterov accelerated gradient)<ref>[https://jlmelville.github.io/mize/nesterov.html#nag Nesterov accelerated gradient]</ref> добавляет к методу Momentum идею "заглядывания вперёд", используя производную не в текущей точке, а в следующей (если бы мы продолжали двигаться в этом же направлении без измений): <tex> w^{(k+1)} = w^{(k)}-v^{(k)}; v^{(k+1)}=\gamma v^{(k)}+\mu\frac{\partial L(w^{(k)}-v^{(k)})}{\partial w}</tex>
  
*RMSProp<ref>[https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b RMSProp]</ref>: <tex>E^{(k)}[g_i^2] = \gamma E^{(k-1)}[g_i^2]+(1-\gamma)g^2_{i, (k)}, w^{(k+1)}_i = w_i^{(k)}-\frac{\mu}{\sqrt{E^{(k)}[g_i^2]+\epsilon}}g_{i, (k)}</tex>;
 
  
 +
*Adagrad имеет преимущество в плане обучения нейронных сетей в предположении, что процесс обучения должен сходится (т.е. не нужно сильно менять веса сети, когда мы уже немного научились). В процессе обучения после каждого прецендента алгоритм будет уменьшать шаг за счёт суммы квадратов координат градиента предыдущих итераций<ref>[http://akyrillidis.github.io/notes/AdaGrad AdaGrad]</ref>: <tex>g_{i,(k)}=\frac{\partial L(w_i^{(k)})}{\partial w_i}, w_i^{(k+1)}=w_i^{(k)}-\frac{\mu}{\sqrt{G^{(k)}_i,i+\epsilon}}g_{i,(k)}</tex>, где G — диагональная матрица, элементы которой, суммы квадратов координат градиента к k-ой итерации алгоритма;
  
*Adadelta<ref>[https://arxiv.org/abs/1212.5701 Adadelta]</ref>:<tex>w^{(k+1)}=w^{(k)}-\mu(Q''(w^{(k)})^{-1}Q'(w^{(k)}</tex>, вычисление матрицы Q вторых производных довольно сложная задача, поэтому вместо неё можно брать приближение: <tex>w^{(k+1)}=w^{(k)}-\frac{RMS^{(k-1)}[\delta w_i}{RMS^{(k)}[g_i]}g_i^{(k)}</tex>, где <tex>RMS^{(k)}[x_i]=\sqrt{E^{(k)}[x^2_i]+\epsilon}</tex>;
 
  
*Adam<ref>[https://arxiv.org/pdf/1412.6980.pdf Adam]</ref>: <tex> w^{(k+1)}_i = w_i^{(k)}-\frac{\mu}{\sqrt{\hat{b}^2_{(k)}+\epsilon}}\hat{m}_{(k)}</tex>, где <tex>\hat{m}_{(k)}=\frac{\gamma_1 E^{(k-1)}[g_i]+(1-\gamma_1)g_{i,(k)}}{1-\gamma_1^k}</tex> и <tex>\hat{b}^2_{(k)}= \frac{\gamma_2 E^{(k-1)}[g^2_i]+(1-\gamma_2)g:2_{i,(k)}}{1-\gamma_2^k}</tex>.
+
*RMSProp<ref>[https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b RMSProp]</ref> основан на идее Adagrad'a, но с учётом того элементы матрицы G могут быть большими величинами и начать препятствовать обучению. Для этого RMSProp делит шаг не на полную сумму градиентов, а на скользящую, т.е. <tex>E^{(k)}[g_i^2] = \gamma E^{(k-1)}[g_i^2]+(1-\gamma)g^2_{i, (k)}</tex>, обновление весов осталось таким же как в Adagrad : <tex> w^{(k+1)}_i = w_i^{(k)}-\frac{\mu}{\sqrt{E^{(k)}[g_i^2]+\epsilon}}g_{i, (k)}</tex>;
 +
 
 +
 
 +
*Adadelta<ref>[https://arxiv.org/abs/1212.5701 Adadelta]</ref> устраняет "нефизичность" методов Adagrad и RMSProp, добавка с градиентом в которых не имеет размерности весов(точнее вообще безразмерна). Умножение этого слагаемого на любую величину правильной размерности — не самая хорошая идея. Используем разложение ряда Тейлора в точке с большим числом членов, тогда появится матрица Q вторых производных:<tex>w^{(k+1)}=w^{(k)}-\mu(Q''(w^{(k)})^{-1}Q'(w^{(k)}</tex>, рассчёт которой повлечёт за собой дополнительные затраты на её расчёт (сами градиенты мы получаем сразу при обратном распространии ошибки), поэтому вместо неё можно брать приближение (из сложных выводов получаем необходимиый множитель <tex>RMS^{(k-1)}[\delta w_i]</tex>, однако в данном случае знание предыдущей скорости не довляет алгоритму "инерции" методов Momentum и NAG): <tex>w^{(k+1)}=w^{(k)}-\frac{RMS^{(k-1)}[\delta w_i]}{RMS^{(k)}[g_i]}g_i^{(k)}</tex>, где <tex>RMS^{(k)}[x_i]=\sqrt{E^{(k)}[x^2_i]+\epsilon}</tex>;
 +
 
 +
 
 +
*Adam<ref>[https://arxiv.org/pdf/1412.6980.pdf Adam]</ref> сочетает в себе преимущества Nag и Adadelta над обычным градиентным спуском: <tex> w^{(k+1)}_i = w_i^{(k)}-\frac{\mu}{\sqrt{\hat{b}^2_{(k)}+\epsilon}}\hat{m}_{(k)}</tex>, где <tex>\hat{m}_{(k)}=\frac{\gamma_1 E^{(k-1)}[g_i]+(1-\gamma_1)g_{i,(k)}}{1-\gamma_1^k}</tex> и <tex>\hat{b}^2_{(k)}= \frac{\gamma_2 E^{(k-1)}[g^2_i]+(1-\gamma_2)g:2_{i,(k)}}{1-\gamma_2^k}</tex>.
  
 
==См.также==
 
==См.также==

Версия 09:01, 27 января 2019

Глубокая сеть состоит из нескольких слоев, где каждый слой организован таким образом, что каждый нейрон в одном слое получает свою копию всех выходных данных предыдущего слоя. Эта модель идеально подходит для определенных типов задач, например, обучение на ограниченном количество более или менее неструктурированных параметров. Существует множество способов изменения параметров (весов) в такой модели, когда ей на вход поступают необработанные данные.

Инициализация сети

Принцип выбора начальных значений весов для слоев, составляющих модель очень важен: установка всех весов в 0 будет серьезным препятствием для обучения, так как ни один из весов изначально не будет активен. Присваивать весам значения из интервала ±1 — тоже обычно не лучший вариант — на самом деле, иногда (в зависимости от задачи и сложности модели) от правильной инициализации модели может зависеть, достигнет она высочайшей производительности или вообще не будет сходиться. Даже если задача не предполагает такой крайности, удачно выбранный способ инициализации весов может значительно влиять на способность модели к обучению, так как он предустанавливает параметры модели с учетом функции потерь[1].

Всегда можно выбрать случайно начальное приближение, но лучше выбирать определённым образом, ниже приведены самые распространённые из них.

Метод инициализации Завьера (Xavier) (иногда — метод Glorot’а)[2]. Основная идея этого метода — упростить прохождение сигнала через слой во время как прямого, так и обратного распространения ошибки для линейной функции активации (этот метод также хорошо работает для сигмоидной функции, так как участок, где она ненасыщена, также имеет линейный характер). При вычислении весов этот метод опирается на вероятностное распределение (равномерное или нормальное) с дисперсией, равной [math]\mathrm{Var}(W) = {2 \over{n_{in} + n_{out}}}[/math], где [math]n_{in}[/math] и [math]n_{out}[/math] — количества нейронов в предыдущем и последующем слоях соответственно.

Метод инициализации Ге (He) — это вариация метода Завьера, больше подходящая функции активации ReLU, компенсирующая тот факт, что эта функция возвращает нуль для половины области определения. А именно, в этом случае [math]\mathrm{Var}(W) = {2 \over{n_{in}}}[/math][3].

Граф вычислений

Глубокие сети являются особенной формой графа вычиcлений.

Рис.1. Граф вычислений для функции [math]f(a,b)=(a+b)*(b+1)[/math]

Граф вычислений — это ориентированный граф, узлы которого соответствуют операциям или переменным. Переменные могут передавать свое значение в операции, а операции могут передавать свои результаты в другие операции. Таким образом, каждый узел в графе определяет функцию переменных.

Значения, которые вводятся в узлы и выходят из узлов, называются тензорами (т.е. многомерными массивами). На рисунке 1 представлен граф вычислений для функции [math]f(a,b)=(a+b)*(b+1)[/math]. В нейронах сетях функций имеют больше аргументов и сложнее, но смысл операций остаётся прежним.

Процесс передачи значений от входных нейронов к выходным называется прямым распространеним (от англ. Forward pass). После чего мы вычисляем ошибку обработанных сетью данных на выходном нейроне и, основываясь на её значении, делаем обратную передачу (Back propagation)[4]. Back propagation заключается в том, чтобы последовательно менять веса нейронной сети, начиная с весов выходного нейрона. Значения весов будут меняться в сторону уменьшения ошибки.

Рис.2. Граф вычислений для функции [math]f(x,y,z)=(x+y)*z[/math]. Зелёные цифры — значения вычислений по ходу выполнения операций графа, красные — значения производной выходной функции по текущей переменной в точке [math](x_0=-2, y_0=5, z_0=-4)[/math]


Преимуществом такого представления функции является простота вычисления производных. Используя следующие правила вычисления частных производных: [math]q=x+y:\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1;[/math] [math]q=xy:\frac{\partial q}{\partial x}=y, \frac{\partial q}{\partial y}=x;[/math] [math]\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q}\frac{\partial q}{\partial y}[/math].

Рассмотрим граф вычислений на рисунке 2 с поданными на вход значениями [math](x_0=-2, y_0=5, z_0=-4)[/math]. Подсчёт производных по графу вычислений производим от значения функции к значениям независимых переменных-входов.

  1. [math]\frac{\partial f}{\partial f} = 1[/math]
  2. [math]\frac{\partial f}{\partial q} = z_0 = -4[/math], [math]\frac{\partial f}{\partial z} = q_0 = 3[/math]
  3. [math]\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q}\frac{\partial q}{\partial x} = -4[/math], [math]\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q}\frac{\partial q}{\partial y} = -4[/math]


Рис.3. Архитекутра нейронной сети: [math]x_{N_i}[/math] — входные значения, [math]y_{N_i}[/math] — выходные с сети значения, [math]w[/math] — матрица весов, изменяющая с помощью линейной комбинации значения предыдущего слоя

Зная производные, можно искать матрицы весов [math]w[/math] (числа, на которые умножаются входные для этого слоя значения) с помощью градиентного спуска сдвигаемся в сторону градиента (при максимизации) или обратную ему (при минимизации) [math]w:=w-\eta\nabla_w f[/math], или его модификаций[5].

Способы настройки параметров

Рисунок 4. Сравение мотификаций метода градиентного спуска на ландшафте "бассейны и стены".
Рисунок 5. Сравение мотификаций метода градиентного спуска на "шатком" ландшафте.

Ниже представлены различные вариации градиентного спуска (более подробное сравнение, применительно к данной задаче [6]). Градиентный спуск — итеративный алгоритм поиска минимума или максимума функции, метриками качества алгоритма этого семейства методов являются скорость сходимости и сходимость в глобальный оптимум. Методы имеют различные преимущества на различных функциях. Так например на рисунке 4 из локального минимума методы adam и nag не могут достигнуть глобального, а в случае "шаткого" ландшафта (рисунок 5) эти методы сходятся быстрее.

  • Стохастический градиентный спуск[7] заключается в том, что алгоритм делает шаг постоянной величины в направлении, указанном градиентом в текущей точке: [math]w^{(0)}[/math] — начальные весы сети, [math]w^{(k+1)}=w^{(k)}-\mu\frac{\partial L(w^{(k)})}{\partial w}[/math];


  • Модификация Momentum [8] запоминает скорость на предыдущем шаге и добавляет в [math]\alpha[/math] раз меньшую величину на следующем шаге: [math] \Delta w:=\alpha \Delta w-\eta \nabla Q_{i}(w)[/math], [math] w:=w+\Delta w[/math] или [math] w:=w-\eta \nabla Q_{i}(w)+\alpha \Delta w[/math];


  • NAG (Nesterov accelerated gradient)[9] добавляет к методу Momentum идею "заглядывания вперёд", используя производную не в текущей точке, а в следующей (если бы мы продолжали двигаться в этом же направлении без измений): [math] w^{(k+1)} = w^{(k)}-v^{(k)}; v^{(k+1)}=\gamma v^{(k)}+\mu\frac{\partial L(w^{(k)}-v^{(k)})}{\partial w}[/math]


  • Adagrad имеет преимущество в плане обучения нейронных сетей в предположении, что процесс обучения должен сходится (т.е. не нужно сильно менять веса сети, когда мы уже немного научились). В процессе обучения после каждого прецендента алгоритм будет уменьшать шаг за счёт суммы квадратов координат градиента предыдущих итераций[10]: [math]g_{i,(k)}=\frac{\partial L(w_i^{(k)})}{\partial w_i}, w_i^{(k+1)}=w_i^{(k)}-\frac{\mu}{\sqrt{G^{(k)}_i,i+\epsilon}}g_{i,(k)}[/math], где G — диагональная матрица, элементы которой, суммы квадратов координат градиента к k-ой итерации алгоритма;


  • RMSProp[11] основан на идее Adagrad'a, но с учётом того элементы матрицы G могут быть большими величинами и начать препятствовать обучению. Для этого RMSProp делит шаг не на полную сумму градиентов, а на скользящую, т.е. [math]E^{(k)}[g_i^2] = \gamma E^{(k-1)}[g_i^2]+(1-\gamma)g^2_{i, (k)}[/math], обновление весов осталось таким же как в Adagrad : [math] w^{(k+1)}_i = w_i^{(k)}-\frac{\mu}{\sqrt{E^{(k)}[g_i^2]+\epsilon}}g_{i, (k)}[/math];


  • Adadelta[12] устраняет "нефизичность" методов Adagrad и RMSProp, добавка с градиентом в которых не имеет размерности весов(точнее вообще безразмерна). Умножение этого слагаемого на любую величину правильной размерности — не самая хорошая идея. Используем разложение ряда Тейлора в точке с большим числом членов, тогда появится матрица Q вторых производных:[math]w^{(k+1)}=w^{(k)}-\mu(Q''(w^{(k)})^{-1}Q'(w^{(k)}[/math], рассчёт которой повлечёт за собой дополнительные затраты на её расчёт (сами градиенты мы получаем сразу при обратном распространии ошибки), поэтому вместо неё можно брать приближение (из сложных выводов получаем необходимиый множитель [math]RMS^{(k-1)}[\delta w_i][/math], однако в данном случае знание предыдущей скорости не довляет алгоритму "инерции" методов Momentum и NAG): [math]w^{(k+1)}=w^{(k)}-\frac{RMS^{(k-1)}[\delta w_i]}{RMS^{(k)}[g_i]}g_i^{(k)}[/math], где [math]RMS^{(k)}[x_i]=\sqrt{E^{(k)}[x^2_i]+\epsilon}[/math];


  • Adam[13] сочетает в себе преимущества Nag и Adadelta над обычным градиентным спуском: [math] w^{(k+1)}_i = w_i^{(k)}-\frac{\mu}{\sqrt{\hat{b}^2_{(k)}+\epsilon}}\hat{m}_{(k)}[/math], где [math]\hat{m}_{(k)}=\frac{\gamma_1 E^{(k-1)}[g_i]+(1-\gamma_1)g_{i,(k)}}{1-\gamma_1^k}[/math] и [math]\hat{b}^2_{(k)}= \frac{\gamma_2 E^{(k-1)}[g^2_i]+(1-\gamma_2)g:2_{i,(k)}}{1-\gamma_2^k}[/math].

См.также

Примечания

Источники информации

  1. Курс лекций по машинному обучению — Воронцов К.В.
  2. Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Neural Networks, 1993., IEEE International Conference on (pp. 586-591). IEEE.