Обсуждение:Теорема Жордана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(НЕ ПРОХОДИ МИМО! ПРОЧИТАЙ И ЗАДУМАЙСЯ!)
Строка 4: Строка 4:
  
 
В первом утверждении бред на бреде и бредом погоняет. В условии — суммы Фейера, а в доказательстве — частичные суммы. Рассматривается норма функции, не являющейся непрерывной, в пространстве непрерывных функций. Полиномом наилучшего приближения <tex> f </tex> в <tex> C </tex> является обычный полином, а не тригонометрический, соответственно, теорема Вейерштрасса для него неприменима. Переход от модуля к норме тоже какой-то мутный. Что делать будем? --[[Участник:Sementry|Мейнстер Д.]] 20:03, 26 июня 2012 (GST)
 
В первом утверждении бред на бреде и бредом погоняет. В условии — суммы Фейера, а в доказательстве — частичные суммы. Рассматривается норма функции, не являющейся непрерывной, в пространстве непрерывных функций. Полиномом наилучшего приближения <tex> f </tex> в <tex> C </tex> является обычный полином, а не тригонометрический, соответственно, теорема Вейерштрасса для него неприменима. Переход от модуля к норме тоже какой-то мутный. Что делать будем? --[[Участник:Sementry|Мейнстер Д.]] 20:03, 26 июня 2012 (GST)
 +
: \sigma (f) — ряд Фурье, а не суммы Фейера. И Виталя с Артемом говорят, что то, что мы берем норму || ||_C у функции не в C — это нормально.--[[Участник:Dgerasimov|Дмитрий Герасимов]] 20:40, 26 июня 2012 (GST)

Версия 19:40, 26 июня 2012

Правда ли, что [math]\|f\|_c[/math] — супремум? --Андрей Комаров 21:41, 25 июня 2012 (GST)

Правда --Андрей Комаров 21:43, 25 июня 2012 (GST)
Спасибо! --Андрей Комаров 21:43, 25 июня 2012 (GST)

В первом утверждении бред на бреде и бредом погоняет. В условии — суммы Фейера, а в доказательстве — частичные суммы. Рассматривается норма функции, не являющейся непрерывной, в пространстве непрерывных функций. Полиномом наилучшего приближения [math] f [/math] в [math] C [/math] является обычный полином, а не тригонометрический, соответственно, теорема Вейерштрасса для него неприменима. Переход от модуля к норме тоже какой-то мутный. Что делать будем? --Мейнстер Д. 20:03, 26 июня 2012 (GST)

\sigma (f) — ряд Фурье, а не суммы Фейера. И Виталя с Артемом говорят, что то, что мы берем норму || ||_C у функции не в C — это нормально.--Дмитрий Герасимов 20:40, 26 июня 2012 (GST)