Пересечение матроидов, определение, примеры — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Примеры)
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Пусть даны два матроида <tex>M_1 = \langle X, I_1\rangle</tex> и <tex>M_2 = \langle X, I_2 \rangle</tex>. '''Пересечением матроидов''' <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = \langle X, I \rangle</tex>, где <tex>X</tex> {{---}} носитель исходных матроидов, а <tex> I = I_1 \cap I_2</tex>.
+
Пусть даны два матроида <tex>M_1 = \langle X, \mathcal{I}_1\rangle</tex> и <tex>M_2 = \langle X, \mathcal{I}_2 \rangle</tex>. '''Пересечением матроидов''' (англ. ''matroid intersection'') <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = \langle X, \mathcal{I} \rangle</tex>, где <tex>X</tex> {{---}} носитель исходных матроидов, а <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>.
 
}}
 
}}
 +
 +
 +
# Пересечение матроидов не всегда является матроидом.
 +
# Пересечение трех и более матроидов {{---}} это NP-полная задача.
  
 
==Примеры==
 
==Примеры==
  
 
# <tex>M_1</tex> {{---}} графовый матроид, <tex>M_2</tex> {{---}} '''разноцветный матроид''' (англ. ''multicolored matroid'') (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение {{---}} это разноцветный лес (англ. ''rainbow forests'').
 
# <tex>M_1</tex> {{---}} графовый матроид, <tex>M_2</tex> {{---}} '''разноцветный матроид''' (англ. ''multicolored matroid'') (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение {{---}} это разноцветный лес (англ. ''rainbow forests'').
# Пусть <tex>G</tex> {{---}} двудольный граф и заданы два матроида <tex>M_1 = \langle X, I_1 \rangle</tex>, <tex>M_2 = \langle X, I_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение {{---}} это множество всевозможных паросочетаний графа. Заметим, что пересечение данных матроидов не является матроидом.
+
# Пусть <tex>G</tex> {{---}} двудольный граф и заданы два матроида <tex>M_1 = \langle X, \mathcal{I}_1 \rangle</tex>, <tex>M_2 = \langle X, \mathcal{I}_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа, <tex>\mathcal{I}_1 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in L \}</tex>, <tex>\mathcal{I}_2 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in R \}</tex>. Тогда их пересечение {{---}} это множество всевозможных паросочетаний графа. Заметим, что пересечение данных матроидов не является матроидом.
# Пусть <tex>D = \langle V, A \rangle </tex> {{---}}  <tex>r</tex>-ориентированное дерево. Пусть граф <tex>G</tex> {{---}} неориентированный граф, соответствующий графу <tex>D</tex>. Тогда рассмотрим два матроида <tex>M_1 = \langle A, I_1 \rangle, M_2 = \langle A, I_2 \rangle</tex>, где <tex>A</tex> {{---}} множество ребёр графа, <tex>M_1</tex> {{---}} графовый матроид <tex>G</tex>, <tex>I_2 = \{F \subseteq X: deg^-(v) \le 1 \: \forall v \in V \setminus \{r\} \}</tex>. Пересечения данных матроидов является ориентированным деревом.
+
# Пусть <tex>D = \langle V, A \rangle </tex> {{---}}  [https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%28%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B3%D1%80%D0%B0%D1%84%D0%BE%D0%B2%29|<tex>r</tex>-ориентированное дерево]. Пусть граф <tex>G</tex> {{---}} неориентированный граф, соответствующий графу <tex>D</tex>. Тогда рассмотрим два матроида <tex>M_1 = \langle A, \mathcal{I}_1 \rangle, M_2 = \langle A, \mathcal{I}_2 \rangle</tex>, где <tex>A</tex> {{---}} множество ребёр графа, <tex>M_1</tex> {{---}} графовый матроид <tex>G</tex>, <tex>\mathcal{I}_2 = \{F \subseteq X: \deg^-(v) \leqslant 1 \: \forall v \in V \setminus \{r\} \}</tex>. Пересечения данных матроидов является ориентированным деревом.
 +
 
 +
== См. также==
 +
* [[Примеры_матроидов]]
 +
* [[Алгоритм_построения_базы_в_пересечении_матроидов]]
 +
* [[Алгоритм_построения_базы_в_объединении_матроидов]]
  
==Источники==
+
==Источники информации ==
 
* Асанов М. О., Баранский В. А., Расин В. В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)
 
* Асанов М. О., Баранский В. А., Расин В. В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)
 
* [http://www-math.mit.edu/~goemans/18433S09/matroid-intersect-notes.pdf Lecture notes on matroid intersection]
 
* [http://www-math.mit.edu/~goemans/18433S09/matroid-intersect-notes.pdf Lecture notes on matroid intersection]

Версия 22:13, 8 июня 2015

Определение:
Пусть даны два матроида [math]M_1 = \langle X, \mathcal{I}_1\rangle[/math] и [math]M_2 = \langle X, \mathcal{I}_2 \rangle[/math]. Пересечением матроидов (англ. matroid intersection) [math]M_1[/math] и [math]M_2[/math] называется пара [math]M_1 \cap M_2 = \langle X, \mathcal{I} \rangle[/math], где [math]X[/math] — носитель исходных матроидов, а [math] \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2[/math].


  1. Пересечение матроидов не всегда является матроидом.
  2. Пересечение трех и более матроидов — это NP-полная задача.

Примеры

  1. [math]M_1[/math] — графовый матроид, [math]M_2[/math]разноцветный матроид (англ. multicolored matroid) (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение — это разноцветный лес (англ. rainbow forests).
  2. Пусть [math]G[/math] — двудольный граф и заданы два матроида [math]M_1 = \langle X, \mathcal{I}_1 \rangle[/math], [math]M_2 = \langle X, \mathcal{I}_2 \rangle[/math], где [math]X[/math] — множество ребёр графа, [math]\mathcal{I}_1 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in L \}[/math], [math]\mathcal{I}_2 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in R \}[/math]. Тогда их пересечение — это множество всевозможных паросочетаний графа. Заметим, что пересечение данных матроидов не является матроидом.
  3. Пусть [math]D = \langle V, A \rangle [/math][math]r[/math]-ориентированное дерево. Пусть граф [math]G[/math] — неориентированный граф, соответствующий графу [math]D[/math]. Тогда рассмотрим два матроида [math]M_1 = \langle A, \mathcal{I}_1 \rangle, M_2 = \langle A, \mathcal{I}_2 \rangle[/math], где [math]A[/math] — множество ребёр графа, [math]M_1[/math] — графовый матроид [math]G[/math], [math]\mathcal{I}_2 = \{F \subseteq X: \deg^-(v) \leqslant 1 \: \forall v \in V \setminus \{r\} \}[/math]. Пересечения данных матроидов является ориентированным деревом.

См. также

Источники информации

  • Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)
  • Lecture notes on matroid intersection