Представление простых в виде суммы двух квадратов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{{Требует доработки
 +
|item1=Надо привести более конструктивное доказательство теоремы. Так, чтобы получился алгоритм. И привести время работы этого алгоритма. Алгоритм должен эффективно работать для простых чисел порядка <tex>10^{300}</tex>.
 +
}}
 +
 
{{Лемма
 
{{Лемма
|author= Вильсон
+
|author=Вильсон
 
|statement=
 
|statement=
Если <tex>p</tex> - простое, то <tex>(p-1)!+1</tex> делится на <tex>p</tex>.
+
Если <tex>p</tex> {{---}} простое, то <tex>(p-1)!+1</tex> делится на <tex>p</tex>.
 
|proof=
 
|proof=
 
При <tex>p=2, p=3</tex> доказательство очевидно. Докажем для <tex>p\geqslant 5</tex>. Так как <tex>\mathbb{Z}_p</tex> - поле, то для каждого <tex>x</tex> есть такое <tex>y</tex>, что <tex>xy\equiv 1(mod p)</tex>. Может оказаться, что для некоторых <tex>0\leqslant x\leqslant p-1</tex> выполнено <tex>x=y</tex>. Найдём все такие <tex>x</tex>, что <tex>x^2\equiv 1(mod p)</tex>.  <tex>x^2-1\equiv 0(mod p)  \Rightarrow (x-1)(x+1)\equiv 0(mod p)</tex>. Значит <tex>x\equiv 1(mod p)</tex> или <tex>x\equiv p-1(mod p)</tex>.
 
При <tex>p=2, p=3</tex> доказательство очевидно. Докажем для <tex>p\geqslant 5</tex>. Так как <tex>\mathbb{Z}_p</tex> - поле, то для каждого <tex>x</tex> есть такое <tex>y</tex>, что <tex>xy\equiv 1(mod p)</tex>. Может оказаться, что для некоторых <tex>0\leqslant x\leqslant p-1</tex> выполнено <tex>x=y</tex>. Найдём все такие <tex>x</tex>, что <tex>x^2\equiv 1(mod p)</tex>.  <tex>x^2-1\equiv 0(mod p)  \Rightarrow (x-1)(x+1)\equiv 0(mod p)</tex>. Значит <tex>x\equiv 1(mod p)</tex> или <tex>x\equiv p-1(mod p)</tex>.

Версия 21:21, 2 июля 2010

Эта статья требует доработки!
  1. Надо привести более конструктивное доказательство теоремы. Так, чтобы получился алгоритм. И привести время работы этого алгоритма. Алгоритм должен эффективно работать для простых чисел порядка [math]10^{300}[/math].

Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).

Лемма (Вильсон):
Если [math]p[/math] — простое, то [math](p-1)!+1[/math] делится на [math]p[/math].
Доказательство:
[math]\triangleright[/math]

При [math]p=2, p=3[/math] доказательство очевидно. Докажем для [math]p\geqslant 5[/math]. Так как [math]\mathbb{Z}_p[/math] - поле, то для каждого [math]x[/math] есть такое [math]y[/math], что [math]xy\equiv 1(mod p)[/math]. Может оказаться, что для некоторых [math]0\leqslant x\leqslant p-1[/math] выполнено [math]x=y[/math]. Найдём все такие [math]x[/math], что [math]x^2\equiv 1(mod p)[/math]. [math]x^2-1\equiv 0(mod p) \Rightarrow (x-1)(x+1)\equiv 0(mod p)[/math]. Значит [math]x\equiv 1(mod p)[/math] или [math]x\equiv p-1(mod p)[/math].

Из этого следует, что множество [math]{2,3,\cdots,p-2}[/math] разбивается на пары такие, что произведение чисел внутри каждой из них сравнимо с [math]1[/math] по модулю[math]p[/math]. Таким образом [math](p-2)!\equiv 1(mod p)[/math]. Но [math]p-1\equiv -1(mod p)[/math]. Следовательно [math](p-1)!\equiv -1(mod p)[/math]
[math]\triangleleft[/math]
Теорема:
Если [math]p\equiv 1(mod 4),p\in\mathbb{P}[/math], то оно представимо в виде суммы двух квадратов.
Доказательство:
[math]\triangleright[/math]

Из леммы Вильсона [math](p-1)!\equiv 1(mod p) \Rightarrow (4n)!+1\equiv 0 (mod p) [/math]. Следовательно [math]1\cdot 2\cdots (2n)\cdot(p-2n)\cdots(p-1)+1 \equiv ((2n)!)^2+1(mod p)[/math]. Теперь говорим, что [math] N = (2n)![/math], тогда [math]N^2 \equiv -1(mod p)[/math].

Рассмотрим пары чисел [math](m,s)[/math] такие, что [math]0\leqslant m, s \leqslant [\sqrt{p}][/math]. Число таких пар равно [math]([\sqrt{p}]+1)^2\gt p[/math]. Значит по крайней мере для двух различных пар [math](m_1,s_1),(m_2,s_2)[/math] остатки от деления [math]m_1+Ns_1, m_2+Ns_2[/math] на [math]p[/math] будут одинаковыми, т.е. число [math]a+Nb[/math], где [math]a=m_1-m_2, b=s_1-s_2[/math], будет делится на [math]p[/math]. При этом [math]~|a|\lt \sqrt{p},~|b|\lt \sqrt{p}[/math]. Но тогда число [math]a^2-N^2b^2=(a-Nb)(a+Nb)[/math] делится на [math]p[/math]. Учитывая, что [math]N^2\equiv -1(mod p)[/math], получим, что [math]a^2+b^2\equiv 0(mod p) \Rightarrow a^2+b^2=rp[/math], где [math]r\in\mathbb{N}[/math]. Но [math]a^2+b^2\lt 2p\Rightarrow r=1[/math], а значит [math]a^2+b^2=p[/math].
[math]\triangleleft[/math]