Суммирование расходящихся рядов

Материал из Викиконспекты
Перейти к: навигация, поиск

Введение

Напомним, что имея последовательность суммы вещественных чисел [math]\{a_n\}[/math] рядом мы называли символ [math]\sum\limits_{i = 1}^\infty a_i[/math]. Ряды можно складывать и умножать на число. Далее, мы определили [math]\sum\limits_{i = 1}^\infty a_i = \lim\limits_{n \rightarrow \infty} \sum\limits_{i = 1}^n a_i[/math].

Мы показали, что исходя их этого равенства для сходимости ряда частичных сумм необходимо условие [math]a_n \rightarrow 0[/math]. Например, ряд [math]\sum\limits_{n = 0}^\infty (-1)^n[/math] не сходится (не имеет суммы в представленном выше смысле), поскольку [math](-1)^n[/math] предела не имеет.

Во многих задачах математики необходимо символу ряда приписывать некоторое число и называть суммой ряда. Как правило, требуется соблюдение условий, вытекающих из арифметических действий с обычными рядами.

Правила суммирования

Когда пишут [math]\sum\limits_{n = 0}^\infty a_n = A(F)[/math], то говорят, что ряд из [math]a_i[/math] имеет сумму [math]A[/math] по правилу суммирования [math]F[/math].

Для правил суммирования требуется выполнение некоторых условий.

  • Линейность: если ряд из [math]b_n[/math] имеет суммой [math]B[/math] по правилу [math]F[/math], то ряд из [math]\alpha a_n + \beta b_n[/math] должен по этому правилу иметь суммой [math]\alpha A + \beta B[/math].
  • Перманентность (регулярность): если [math]\sum\limits_{n = 0}^\infty a_n = A[/math] (ряд имеет сумму в обычном смысле), то [math]\sum\limits_{n = 0}^\infty a_n = A(F)[/math]
  • Эффективность: должны существовать ряды, которые суммируются с помощью [math]F[/math], но не имеют суммы в классическом смысле.

Метод средних арифметических

Ряд [math]\sum\limits_{n = 0}^\infty a_n[/math] имеет сумму [math]S[/math] по методу средних арифметических (обозначают аббревиатурой с.а.), если [math]S = \lim\limits_{n \rightarrow \infty} \frac 1{n + 1} \sum\limits_{k = 0}^n S_k[/math]. Как правило, используют обозначение [math]\sigma_n = \frac 1{n + 1} \sum\limits_{k = 0}^n S_k[/math].

Выясним, что способ удовлетворяет перечисленным выше требованиям. Линейность этого способа очевидна (из арифметики пределов и свойствах сложения конечного числа слагаемых).

Проверим эффективность способа.

Утверждение:
Сумма расходящегося ряда [math]\sum\limits_{k = 0}^\infty (-1)^k[/math] равна [math]\frac 12[/math] по методу средних арифметических.
[math]\triangleright[/math]

[math]\sigma_{2m + 1} = \frac 1{2m + 1} (S_0 + S_1 + \dots + S_{2m}) = \frac m{2m + 1} \longrightarrow \frac 12[/math].

Аналогично рассматриваем [math]\sigma_{2m}[/math].

Итого, [math]\sigma_n \longrightarrow \frac 12[/math], и ряд имеет сумму [math]\frac 12[/math] по методу средних арифметических.
[math]\triangleleft[/math]

Проверим перманентность. Требуется доказать, что если [math]S = \lim\limits_{n \rightarrow \infty} S_n[/math], то [math]S = \lim\limits_{n \rightarrow \infty} \sigma_n[/math].

Действительно, [math]S_n = S + \alpha_n[/math], где [math]\alpha_n \longrightarrow 0[/math]. Тогда [math]\sigma_n = S + \frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k[/math].

Требуется доказать, что [math]\frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k \longrightarrow 0[/math]. Докажем по определению.

Рассмотрим некоторое [math]\varepsilon \gt 0[/math], подбираем [math]N[/math] такое, что [math]n \ge N \Rightarrow |\alpha_n| \lt \varepsilon / 2[/math].

[math]\frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k = \frac 1{n + 1} \sum\limits_{k = 0}^N \alpha_k + \sum\limits_{k = N + 1}^n \alpha_k[/math] [math]\left | \frac 1{2n + 1} \sum\limits_{k = 0}^n \alpha_k \right | \le \frac 1{n + 1} \sum\limits_{k = 0}^N |\alpha_k| + \frac {n - N}{n + 1} \varepsilon[/math]

Поскольку в первом слагаемом бесконечно малая умножается на константу, то начиная с [math]N_1[/math] выполняется [math]\frac 1{n + 1} \sum\limits_{k = 0}^n |\alpha_k| \lt \varepsilon / 2[/math]. Но, поскольку [math]\frac {n - N}{n + 1} \lt 1[/math], то, начиная с [math]N + N_1[/math] выполняется [math]\left | \frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k \right | \lt \varepsilon[/math].

Следовательно, по определению предела [math]\frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k[/math] стремится к нулю.

Метод Абеля

Некоторые умозаключения

[math](n + 1)\sigma_n = S_0 + S_1 + \ldots + S_n[/math]

[math]n\sigma_n = S_0 + S_1 + \ldots + S_{n - 1}[/math]

Выразим частичные суммы через [math]n[/math] и [math]\sigma[/math]:

[math](n + 1)\sigma_n - n\sigma_{n - 1} = S_n[/math]

[math]n\sigma_{n - 1} - (n - 1)\sigma_{n - 2} = S_{n - 1}[/math]

Выразим через это же элемент ряда:

[math](n + 1)\sigma_n - 2n\sigma_{n - 1} + (n - 1)\sigma_{n - 2} = a_n[/math]

Поделим все выражение на [math]n[/math]:

[math]\frac {a_n}{n} = (1 + \frac {1}{n})\sigma_n - 2\sigma_{n - 1} + (1 - \frac {1}{n})\sigma_{n - 2}[/math]

Мы знаем, что [math] \sigma_n\to S [/math] при [math] n \to \infty[/math]. Получается, что [math] \frac {a_n}{n}\rightarrow 0[/math].

Необходимый признак

Из предыдущего пункта вытекает необходимый признак:

Если ряд суммируется методом средних арифметических[math](\exists \lim\limits_{n \to \infty} \sigma_n)[/math], то [math]\frac {a_n}{n} \to 0[/math]. Однако, существуют ряды, у которых это требование не выполняется. Например: [math] \sum\limits_{k = 0}^{\infty} (-1)^k(k + 1)[/math]. Было бы неплохо научиться что-нибудь делать хотя бы с некоторыми такими рядами.

Метод Абеля

[math]\sum\limits_{n = 0}^{\infty}a_n[/math], пусть [math] \forall t \in (0; 1) : \sum\limits_{n = 0}^{\infty}a_nt^n = f(t)[/math](в классическом смысле). Полагаем [math] S = \lim\limits_{t \to 1 - 0} f(t)[/math](если таковой существует).


Определение:
[math]\sum\limits_{n = 0}^{\infty} = S(A)[/math], где [math]A[/math] — метод Абеля.


Доказательство правильности

  • Линейность - очевидна из определения.
  • Эффективность:
  • Перманентность:
  • ???????????
  • PROFIT!!!