Теорема Дирака — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теорема)
м (rollbackEdits.php mass rollback)
 
(не показано 9 промежуточных версий 9 участников)
Строка 1: Строка 1:
==Лемма о длине цикла==
+
9м топ остальным по лицу хлоп
{{Лемма
 
|about=о длине цикла
 
|statement= Пусть <tex>G</tex> {{---}} произвольный [[Основные определения теории графов#def_undirected_graph_1|неориентированный граф]] и <tex>\delta</tex> {{---}} минимальная [[Основные определения теории графов#def_graph_degree_1|степень]] его вершин. Если <tex>\delta \geqslant 2</tex>, то в графе <tex>G</tex> существует [[Основные определения теории графов#def_graph_cycle_1|цикл]] <tex>C</tex> длиной <tex>l \geqslant \delta + 1</tex>.
 
|proof=
 
Рассмотрим путь максимальной длины <tex>P = v_0 v_1 \dots v_s</tex>. Все смежные с <tex>v_0</tex> вершины лежат на <tex>P</tex>. Обозначим <tex>k = \max \{i: v_0 v_i \in E\} </tex>. Тогда <tex>\delta \leqslant \deg v_0 \leqslant k</tex>. Цикл  <tex>C = v_0 v_1 \dots v_k v_0</tex> имеет длину <tex>l = k + 1 \geqslant \delta + 1</tex>
 
}}
 
 
 
==Теорема==
 
 
 
{{Теорема
 
|about=Дирак
 
|statement=
 
КТО ИЗ 8М ДАЖЕ НЕ ПЫТАЙТЕСЬ СПИСАТЬ!.
 
}}
 
  
 
==Альтернативное доказательство==
 
==Альтернативное доказательство==

Текущая версия на 19:33, 4 сентября 2022

9м топ остальным по лицу хлоп

Альтернативное доказательство

Теорема (Дирак — альтернативное доказательство):
Пусть [math]G[/math] — неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]n \geqslant 3[/math] и [math]\delta \geqslant n/2[/math], то [math]G[/math]гамильтонов граф.
Доказательство:
[math]\triangleright[/math]
Для [math]\forall k[/math] верна импликация [math]d_k \leqslant k \lt n/2 \Rightarrow d_{n-k} \geqslant n-k[/math], поскольку левая её часть всегда ложна. Тогда по теореме Хватала [math]G[/math] — гамильтонов граф.
[math]\triangleleft[/math]
Теорема (Вывод из теоремы Оре):
Пусть [math]G[/math] — неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]n \geqslant 3[/math] и [math]\delta \geqslant n/2[/math], то [math]G[/math]гамильтонов граф.
Доказательство:
[math]\triangleright[/math]
Возьмем любые неравные вершины [math] u, v \in G [/math]. Тогда [math] \displaystyle \deg u + \deg v \geqslant \frac n 2 + \frac n 2 = n [/math]. По теореме Оре [math] G [/math] — гамильтонов граф.
[math]\triangleleft[/math]

См. также

Источники информации

  • Wikipedia — Dirac's Theorem
  • Graham, R.L., Groetschel M., and Lovász L., eds. (1996). Handbook of Combinatorics, Volumes 1 and 2. Elsevier (North-Holland), Amsterdam, and MIT Press, Cambridge, Mass. ISBN 0-262-07169-X.