Участник:Feorge — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Добавлено неравенство Гильберта)
м (Небольшой фикс)
Строка 5: Строка 5:
 
|definition=  
 
|definition=  
 
Рассмотрим <tex> B^n </tex>.
 
Рассмотрим <tex> B^n </tex>.
Булевым шаром в <tex> B^n </tex> радиуса <tex> r </tex> с центром <tex> x </tex> называется множество <tex> S(x,r) = \{ y : H(x,y) \leqslant r\} </tex>.   
+
В <tex>B^n</tex> булевым шаром радиуса <tex> r </tex> с центром в <tex> x </tex> называется множество <tex> S(x,r) = \{ y : H(x,y) \leqslant r\} </tex>, где <tex>H(x,y)</tex> — расстояние Хемминга между <tex>x</tex> и <tex>y</tex>.   
 
}}
 
}}
  
Строка 11: Строка 11:
 
|neat = 1  
 
|neat = 1  
 
|definition=  
 
|definition=  
Обьёмом шара <tex>S(x,r)</tex> в <tex>B^n</tex> называется его мощность <tex>|S(x,r)|</tex> и обозначается <tex>V(n,r)</tex>.  
+
Обьёмом шара <tex>S(x,r)</tex> в <tex>B^n</tex> называется его размер <tex>|S(x,r)|</tex> и обозначается <tex>V(n,r)</tex>.  
 
}}
 
}}
  
Строка 25: Строка 25:
 
}}
 
}}
  
Можно переформулировать свойство кодов, исправляющих <tex>k</tex>, ошибок в терминах булевых шаров.
+
Можно переформулировать свойство кодов, исправляющих <tex>k</tex> ошибок, в терминах булевых шаров.
 
{{Лемма
 
{{Лемма
 
|id=boolean_balls_coding   
 
|id=boolean_balls_coding   
Строка 44: Строка 44:
 
Прологарифмировав неравнество, получим <tex>\frac{\log(m)}{n} \leqslant 1 - \frac{V(n, k)}{n}</tex>.
 
Прологарифмировав неравнество, получим <tex>\frac{\log(m)}{n} \leqslant 1 - \frac{V(n, k)}{n}</tex>.
 
Здесь <tex>\frac{\log(m)}{n}</tex> это плотность кодирования, количество информации в одном символе алфавита на размер кода.
 
Здесь <tex>\frac{\log(m)}{n}</tex> это плотность кодирования, количество информации в одном символе алфавита на размер кода.
Таким образом при кодировании с защитой от ошибок падает скорость передачи.
+
Таким образом, при кодировании с защитой от ошибок падает скорость передачи.
  
 
Аналогично составляется оценка в другую сторону.  
 
Аналогично составляется оценка в другую сторону.  
 
  
 
{{Теорема  
 
{{Теорема  
 
|about=Граница Гильберта
 
|about=Граница Гильберта
 
|statement=  
 
|statement=  
Если выполнено неравенство <tex> mV(n,2k) \leqslant 2^n</tex>, то существует код для <tex>c:\Sigma \to B^n</tex> для <tex>m</tex>-символьного алфавита <tex>\Sigma </tex>, исправляющий <tex>k</tex> ошибок.
+
Если выполнено неравенство <tex> mV(n,2k) \leqslant 2^n</tex>, то существует код <tex>c:\Sigma \to B^n</tex> для <tex>m</tex>-символьного алфавита <tex>\Sigma </tex>, исправляющий <tex>k</tex> ошибок.
 
|proof=  
 
|proof=  
 
Построим этот код жадным алгоритмом.  
 
Построим этот код жадным алгоритмом.  

Версия 01:20, 26 июня 2021

Граница Хемминга

Для составления оценок снизу и сверху на параметры кодирования нам понадобится понятие шара.

Определение:
Рассмотрим [math] B^n [/math]. В [math]B^n[/math] булевым шаром радиуса [math] r [/math] с центром в [math] x [/math] называется множество [math] S(x,r) = \{ y : H(x,y) \leqslant r\} [/math], где [math]H(x,y)[/math] — расстояние Хемминга между [math]x[/math] и [math]y[/math].


Определение:
Обьёмом шара [math]S(x,r)[/math] в [math]B^n[/math] называется его размер [math]|S(x,r)|[/math] и обозначается [math]V(n,r)[/math].


Утверждение:
Обьём шара не зависит от его центра.
[math]\triangleright[/math]

Заметим, что шар [math]S(x,r)[/math] всегда можно получить из другого шара [math]S(y,r)[/math] с помощью "параллельного переноса" на вектор [math]x\oplus y[/math], т.е. [math] S(x, r) = \{z : z = t \oplus x \oplus y, t \in S(y,r) \} [/math]. Покажем это. Необходимо доказать, что [math]H(x,z) = H(y,t)[/math] при [math]t = z \oplus (x \oplus y)[/math] и [math]y = x \oplus (x \oplus y)[/math].

[math]H(y,t) = |\{i : y[i] \neq t[i]\}| = |\{i : x[i] \oplus (x[i] \oplus y[i]) \neq z[i] + (x[i] + y[i]) \}| = |\{ i : x[i] \neq z[i]\}| = H(z,t) [/math].
[math]\triangleleft[/math]

Можно переформулировать свойство кодов, исправляющих [math]k[/math] ошибок, в терминах булевых шаров.

Лемма:
Пусть [math]c:\Sigma \to B^n[/math] — код, исправляющий [math]k[/math] ошибок. Тогда для любых неравных [math]x,y\in \Sigma[/math] выполнено [math]S(c(x), k) \cap S(c(y), k) = \emptyset[/math].
Теорема (Граница Хемминга):
Пусть [math]c: \Sigma \to B^n[/math] — код для [math]m[/math]-символьного алфавита, исправляющий [math]k[/math] ошибок. Тогда выполнено неравенство [math]mV(n,k) \leqslant 2^n[/math].
Доказательство:
[math]\triangleright[/math]

Это прямое следствие предыдущей леммы. Всего есть [math]m = |\Sigma|[/math] попарно непересекающихся шаров.

Их суммарный обьём равен [math]mV(n,k)[/math], и он не может превосходить общее число возможных веткоров [math]|B| = 2^n[/math].
[math]\triangleleft[/math]

Граница Хемминга даёт верхнюю оценку на скорость передачи сообщений в канале с ошибками. Прологарифмировав неравнество, получим [math]\frac{\log(m)}{n} \leqslant 1 - \frac{V(n, k)}{n}[/math]. Здесь [math]\frac{\log(m)}{n}[/math] это плотность кодирования, количество информации в одном символе алфавита на размер кода. Таким образом, при кодировании с защитой от ошибок падает скорость передачи.

Аналогично составляется оценка в другую сторону.

Теорема (Граница Гильберта):
Если выполнено неравенство [math] mV(n,2k) \leqslant 2^n[/math], то существует код [math]c:\Sigma \to B^n[/math] для [math]m[/math]-символьного алфавита [math]\Sigma [/math], исправляющий [math]k[/math] ошибок.
Доказательство:
[math]\triangleright[/math]

Построим этот код жадным алгоритмом. Сопоставим первому символу [math]x_1[/math] из [math]\Sigma[/math] в [math]B^n[/math] кодовое слово [math]c(x_1)\in B^n[/math] и вырежем из B^n шар [math]S(x_1,2k)[/math]. Для второго символа [math]x_2[/math] повторим ту же процедуру, выберем ему кодовое слово [math]c(x_2)\in B^n \setminus S(x_1, 2k)[/math]. На каждом шаге будем выбирать для каждого символа [math]x_{i+1}[/math] по слову [math]c(x_{i+1}) \in B^n \setminus \bigcup_{j=1}^{i} S(x_j, 2k) [/math].

Неравенство гарантирует нам, что на каждому символу мы сможем выбрать кодовое слово, чей шар радиуса [math]2k[/math] не пересекается с шарами всех остальных слов (как того требует исправление [math]k[/math] ошибок), а значит мы можем построить искомый код.
[math]\triangleleft[/math]