Изменения

Перейти к: навигация, поиск

Алгебра графов

106 байт убрано, 22:50, 18 декабря 2017
м
Нет описания правки
'''Алгебра графов''' (англ. ''Graph algebraof graphs'') {{---}} способ построить на пространстве [[Основные определения теории графов#Ориентированные графы | ориентированных графов]] алгебраическую структуру. Впервые такая возможность была продемонстрирована McNulty и George F. в 1983 году.<ref>[https://www.researchgate.net/publication/225490641_Inherently_nonfinitely_based_finite_algebras McNulty, George F.; Shallon, Caroline R. (1983) {{---}} "Inherently nonfinitely based finite algebras", Universal algebra and lattice theory (Puebla, 1982), Lecture Notes in Math., 1004, Berlin, New York: Springer-Verlag, pp. 206–231.]</ref>
== Основные определения ==
{{Определение
{{Определение
|definition=
'''Одиночный граф''' (англ. ''singleton single graph'') {{---}} [[Основные определения теории графов#Ориентированные графы|граф]] состоящий из одной вершины. Здесь и далее будем обозначать его как просто строчной буквой. То есть <tex> a = \{a, \varnothing \}</tex>
}}
{{Определение
* '''Сложение'''(англ. ''overlay''): <tex>G_1 + G_2 = \{V_1 \cup V_2, E_1 \cup E_2\}</tex>
* '''Соединеие'''(англ. ''connect''): <tex> G_1 \rightarrow G_2 = \{V_1 \cup V_2, E_1 \cup E_2 \cup V_1 \times V_2\}</tex>
}}
 
{{Утверждение
|statement=Любой граф <tex>G = \{V, E\}</tex> можно представить в виде последовательности применения операций сложения и соединения.
|proof=Действительно, <tex>G = \sum_{(u, v\in V)}u \rightarrow v</tex>
}}
== Cвойства операций ==
Левая часть:
<tex>G_1 \rightarrow (G_2 \rightarrow G_3) = (V_1, E_1) \rightarrow ((V_2, E_2) \rightarrow (V_3, E_3)) = (V_1, E_1) \rightarrow (V_2 \cup V_3, E_2 \cup E_3 \cup V_2 \times V_3) = (V_1 \cup V_2 \cup V_3, E_1 \cup E_2 \cup E_3 \cup V_2 \times V_3 \cup V_1 \times (V_2 \cup V_3)) = (V_1 \cup V_2 \cup V_3, E_1 \cup E_2 \cup E_3 \cup V_2 \times V_3 \cup V_1 \times V_2 \cup V_1 \times V_3) = (V_1 \cup V_2 \cup V_3, E_1 \cup E_2 \cup E_3 \cup V_1 \times V_2 \cup V_1 \times V_3 \cup V_2 \times V_3)</tex>
Правая часть:
Правая часть:
<tex>G_1 \rightarrow G_2 + G_1 \rightarrow G_3 = (V_1, E_1) \rightarrow (V_2, E_2) + (V_1, E_1) \rightarrow (V_3, E_3) = (V_1 \cup V_2, E_1 \cup E_2 \cup V_1 \times V_2) + (V_1 \cup V_3, E_1 \cup E_3 \cup V_1 \times V_3) = (V_1 \cup V_2 \cup V_1 \cup V_3, E_1 \cup E_2 \cup V_1 \times V_2 \cup E_1 \cup E_3 \cup V_1 \times V_3)= (V_1 \cup V_2 \cup V_3, E_1 \cup E_2 \cup E_3 \cup V_1 \times V_2 \cup V_1 \times V_3) = (V_1 \cup V_2 \cup V_3, E_1 \cup E_2 \cup E_3 \cup V_1 \times (V_2 \cup V_3))</tex>
Правая дистрибутивность доказывается аналогично.
}}
 
 
* ''Декомпозиция:''
{{Утверждение
<tex>G_1 \rightarrow G_2 + G_1 \rightarrow G_3 + G_2 \rightarrow G_3 = (V_1, E_1) \rightarrow (V_2, E_2) + (V_1, E_1) \rightarrow (V_3, E_3) + (V_2, E_2) \rightarrow (V_3, E_3) = (V_1 \cup V_2, E_1 \cup E_2 \cup V_1 \times V_2) + (V_1 \cup V_3, E_1 \cup E_3 \cup V_1 \times V_3) + (V_2 \cup V_3, E_2 \cup E_3 \cup V_2 \times V_3) = (V_1 \cup V_2 \cup V_1 \cup V_3 \cup V_2 \cup V_3, E_1 \cup E_2 \cup V_1 \times V_2 \cup E_1 \cup E_3 \cup V_1 \times V_3 \cup E_2 \cup E_3 \cup V_2 \times V_3) = (V_1 \cup V_2 \cup V_3, E_1 \cup E_2 \cup E_3 \cup V_1 \times V_2 \cup V_1 \times V_3 \cup V_2 \times V_3)</tex>
}}
 
 
{{Утверждение
|statement=Любой граф <tex>G = \{V, E\}</tex> можно представить в виде композиции сложений и соединений.
|proof=Действительно, <tex>G = \sum_{(u, v\in V)}u \rightarrow v</tex>, где <tex>\sum</tex> обозначает суммирование при помощи ранее определенной операции сложения.
}}
== Применения ==
Построенная нами алгебраическая структура очень полезна для использования в функциональных языках программирования. До введения понятия алгебры графов работа с ними в функциональных языках была очень неудобна и часто порождало ошибки.
Дело в том, что способ представления в виде списка смежности либо матрицы смежности, широко используемых в императивных программах, оказался очень тяжело применим в функциональной среде.  Компилятор при представлении графа в виде списка не может проверить, ни его корректность в принципеприныпе, ни корректность совершения некоторой операции над ним. Но если представить граф в виде последовательности последовательных операций алгебры из простейших просевших графов, то почти все проблемы, связанные с построением графа и проверкой его корректности, устраняются.
Подробная реализация на языке Haskell может быть найдена в этой статье.<ref>[https://blogs.ncl.ac.uk/andreymokhov/an-algebra-of-graphs/ An algebra of graphs {{---}} "no time" Andrey Mokhov's blog]</ref>
== См. также ==
* [[Основные определения теории графов]]
162
правки

Навигация