Алгоритм Баума-Велша — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Пример)
(Пример)
Строка 58: Строка 58:
  
 
== Пример ==
 
== Пример ==
Предположим, у нас есть курица, с которой мы собираем яйца. Куриные ли яйца отложены для сбора зависит от некоторых неизвестных факторов. Для простоты предположим, что существуют лишь два состояния, которые определяют куриные ли это яйца. В начальный момент нам неизвестно текущее состояние, также нам неизвестна вероятность перехода из одного состояния в другое. Для начала возьмем произвольные матрицы переходов и состояний.
+
Предположим, у нас есть курица, с которой мы собираем яйца. Куриные ли это яйца - зависит от некоторых неизвестных факторов. Для простоты предположим, что существуют лишь два состояния, которые определяют куриные ли это яйца. В начальный момент нам неизвестно текущее состояние, также нам неизвестна вероятность перехода из одного состояния в другое. Для начала возьмем произвольные матрицы переходов и состояний.
  
 
<center>
 
<center>

Версия 22:25, 21 декабря 2014

Алгоритм Баума-Велша — алгоритм для нахождения неизвестных параметров скрытой Марковской модели. Использует алгоритм прямого-обратного хода.

История

Скрытые_Марковские_модели(HMMs) и алгоритм Баума-Велша впервые были описаны в заметках Леонарда Баума и его сверстников в конце 1960х. Одно из первых основных приложений на основе HMMs было использовано в области обработки речи. В 1980х HMMs стало эффективным инструментом в анализе биологических систем и информации, особенно в генном анализе.

Описание алгоритма

Пусть [math]Q_t[/math] - это дискретная случайная переменная, принимающая одно из [math]N[/math] значений [math](1..N)[/math]. Будем полагать, что данная модель Маркова, определенная как [math]P(Q_t | Q_{t - 1})[/math] однородна по времени, то есть независима от [math]t[/math]. Тогда можно задать [math]P(Q_t | Q_{t - 1}) [/math] как независящую от времени стохастическую матрицу перемещений [math]A = \{a_{ij}\} = p(Q_t = j | Q_{t - 1} = i)[/math]. Особый случай для времени [math]t = 1[/math] определяется начальным распределением [math]\pi_i = P(Q_1 = i)[/math].

Будем считать, что мы в состоянии [math]j[/math] в момент времени [math]t[/math], если [math]Q_t = j[/math]. Последовательность заданных состояний определяется как [math]q = (q_1, ..., q_T)[/math], где [math]q_t \in \{ 1..N\}[/math] является состоянием в момент времени [math]t[/math].

Наблюдение может иметь одно из [math]L[/math] возможных значений, [math]Q_t \in \{o_1, ..., o_L\}[/math]. Вероятность заданного вектора наблюдений в момент времени [math]t[/math] для состояния [math]j[/math] определяется как [math]b_j(o_t) = P(O_t = o_t | Q_t = j)( B = \{ b_{ij}\}[/math] - это матрица [math]L[/math] на [math]N)[/math]. Заданная последовательность наблюдений [math]O[/math] выражается как [math] O = (O_1 = o_1, ..., O_T = o_T)[/math].

Следовательно, мы можем описать скрытую модель Маркова с помощью [math] \lambda = (A, B, \pi)[/math]. При заданном векторе наблюдений [math]O[/math] алгоритм Баума-Велша находит [math] \lambda^*=\max_\lambda P(O\mid\lambda)[/math]. [math]\lambda[/math] максимизирует вероятность наблюдений [math]O[/math].


Исходные данные: [math] \lambda = (A, B, \pi)[/math] со случайными начальными условиями. Алгоритм итеративно обновляет параметр [math]\lambda[/math] до схождения в одной точке.


Прямая процедура

[math]a_i(t) = p(O_1 = o_1, ..., O_t = o_t, Q_t = _i | \lambda[/math], что является вероятностью получения заданной последовательности [math]\{ o_1, ..., o_t\}[/math] для состояния [math]i[/math] в момент времени [math]t[/math].

[math]a_i(t)[/math] можно вычислить рекурсивно:

1.[math]a_i(1) = \pi_i \cdot b_i(O_1) [/math];

2.[math]a_j(t + 1) = b_j(O_{t + 1})\displaystyle\sum^N_{i=1}a_i(t) \cdot a_{ij}[/math].

Обратная процедура

Данная процедура позволяет вычислить вероятность конечной заданной последовательности [math]o_{t + 1}, ..., o_T[/math] при условии, что мы начали из исходного состояния [math]i[/math], в момент времени [math]t[/math].

[math]\beta_i(t)[/math] можно вычислить рекурсивно:

1.[math]\beta_i(T) = 1[/math];

2. [math]\beta_i(t) = \displaystyle\sum^N_{j = 1}\beta_j(t + 1)a_{ij}b_j(O_{t + 1})[/math].

Обновление переменных

Определим временные переменные:

[math]\gamma_i(t) = p(Q_t=i\mid O,\;\lambda)=\frac{\alpha_i(t)\beta_i(t)}{\displaystyle\sum^N_{j=1}\alpha_j(t)\beta_j(t)}[/math]

[math]\xi_{ij}(t) = p(Q_t=i,\;Q_{t+1}=j\mid O,\;\lambda)=\frac{\alpha_i(t)a_{ij}\beta_j(t+1)b_j(o_{t+1})}{\displaystyle\sum^N_{i=1}\displaystyle\sum^N_{j=1}\alpha_i(t)a_{ij}\beta_j(t+1)b_j(O_{t+1})}[/math].

Имея [math]\gamma[/math] и [math]\xi[/math], можно определить:

[math]\bar\pi_i=\gamma_i(1)[/math],

[math]\bar{a}_{ij}=\frac{\displaystyle\sum^{T-1}_{t=1}\xi_{ij}(t)}{\displaystyle\sum^{T-1}_{t=1}\gamma_i(t)}[/math],

[math]\bar{b}_i(k)=\frac{\displaystyle\sum^T_{t=1}\delta_{O_t,\;o_k}\gamma_i(t)}{\displaystyle\sum^T_{t=1}\gamma_i(t)}[/math].

Используя новые переменные [math] A, B, \pi[/math] итерации продолжаются до схождения.

Пример

Предположим, у нас есть курица, с которой мы собираем яйца. Куриные ли это яйца - зависит от некоторых неизвестных факторов. Для простоты предположим, что существуют лишь два состояния, которые определяют куриные ли это яйца. В начальный момент нам неизвестно текущее состояние, также нам неизвестна вероятность перехода из одного состояния в другое. Для начала возьмем произвольные матрицы переходов и состояний.

Переходы
Состояние 1 Состояние 2
Состояние 1 0.5 0.5
Состояние 2 0.3 0.7
Состояния
Яйца не отложены Яйца отложены
Состояние 1 0.3 0.7
Состояние 2 0.8 0.2
Начальное состояние
Состояние 1 0.2
Состояние 2 0.8

Рассмотрим набор наблюдений (E - яйца отложены, N - яйца не отложены): NN, NN, NN, NN, NE, EE, EN, NN, NN.

Следующим шагом оценим новую матрицу переходов:

Последовательность Вероятность последовательности и состояний S1 и S2 Наибольшая вероятность наблюдения
NN 0.024 0.3584 S2,S2
NN 0.024 0.3584 S2,S2
NN 0.024 0.3584 S2,S2
NN 0.024 0.3584 S2,S2
NE 0.006 0.1344 S2,S1
EE 0.014 0.0490 S1,S1
EN 0.056 0.0896 S2,S2
NN 0.024 0.3584 S2,S2
NN 0.024 0.3584 S2,S2
Итого 0.22 2.4234

Псевдокод

Применение

Источники

1. https://ru.wikipedia.org/wiki/Алгоритм_Баума_-_Велша

2. http://logic.pdmi.ras.ru/~sergey/teaching/asr/notes-09-hmm.pdf

3. http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm