Алгоритм Куна для поиска максимального паросочетания — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Алгоритм: исправил неправильное название теоремы)
м (Алгоритм)
 
(не показано 27 промежуточных версий 5 участников)
Строка 2: Строка 2:
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
  Если из вершины <tex>x</tex> не существует дополняющей цепи относительно паросочетания <tex>M</tex> и паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи, тогда из <tex>x</tex> не существует дополняющей цепи в <tex>M'</tex>.
+
  Если из вершины <tex>x</tex> не существует [[Теорема о максимальном паросочетании и дополняющих цепях|дополняющей цепи]] относительно паросочетания <tex>M</tex> и паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи, тогда из <tex>x</tex> не существует дополняющей цепи в <tex>M'</tex>.
 
|proof=
 
|proof=
 
[[Файл:Kuhn2.png|thumb|right|300x300px|Рисунок 1.]]
 
[[Файл:Kuhn2.png|thumb|right|300x300px|Рисунок 1.]]
Строка 9: Строка 9:
 
: Допустим в паросочетание внесли изменения вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex> и из вершины <tex>x</tex> появилась дополняющая цепь.
 
: Допустим в паросочетание внесли изменения вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex> и из вершины <tex>x</tex> появилась дополняющая цепь.
 
: Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из <tex>x</tex> существовала и в исходном паросочетании.<br><br>
 
: Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из <tex>x</tex> существовала и в исходном паросочетании.<br><br>
: Пусть <tex>p</tex> {{---}} ближайшая к <tex>x</tex> вершина, которая принадлежит и новой дополняющей цепи и цепи <tex>(y \rightsquigarrow z)</tex>.
+
: Пусть <tex>p</tex> ближайшая к <tex>x</tex> вершина, которая принадлежит и новой дополняющей цепи и цепи <tex>(y \rightsquigarrow z)</tex>.
: Тогда <tex>MP</tex> - последнее ребро на отрезке <tex>(y \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>NP</tex> - последнее ребро на отрезке <tex>(z \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>QP</tex> - последнее ребро лежащее на отрезке <tex>(x \rightsquigarrow p)</tex> новой дополняющей цепи(см. Рисунок 1).<br><br>
+
: Тогда <tex>MP</tex> последнее ребро на отрезке <tex>(y \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>NP</tex> последнее ребро на отрезке <tex>(z \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>QP</tex> - последнее ребро лежащее на отрезке <tex>(x \rightsquigarrow p)</tex> новой дополняющей цепи(см. Рисунок 1).<br><br>
 
: Допустим <tex>MP</tex> принадлежит паросочетанию <tex>M'</tex>, тогда <tex>NP</tex> ему не принадлежит.<br>
 
: Допустим <tex>MP</tex> принадлежит паросочетанию <tex>M'</tex>, тогда <tex>NP</tex> ему не принадлежит.<br>
 
:: (Случай, когда <tex>NP</tex> принадлежит паросочетанию <tex>M'</tex> полностью симметричен.)<br><br>
 
:: (Случай, когда <tex>NP</tex> принадлежит паросочетанию <tex>M'</tex> полностью симметричен.)<br><br>
 
: Поскольку паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex>, в паросочетание <tex>M</tex> входило ребро <tex>NP</tex>, а ребро <tex>MP</tex> нет.
 
: Поскольку паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex>, в паросочетание <tex>M</tex> входило ребро <tex>NP</tex>, а ребро <tex>MP</tex> нет.
: Кроме того, ребро <tex>QP</tex> не лежит ни в исходном паросочетании <tex>M</tex>, ни в паросочетании <tex>M'</tex>, в противном случае оказалось бы, что вершина <tex>p</tex> инцидентна нескольким ребрам из паросочетания, что противоречит определению паросочетания.<br><br>
+
: Кроме того, ребро <tex>QP</tex> не лежит ни в исходном паросочетании <tex>M</tex>, ни в паросочетании <tex>M'</tex>, в противном случае оказалось бы, что вершина <tex>p</tex> инцидентна нескольким рёбрам из паросочетания, что противоречит определению паросочетания.<br><br>
 
:Тогда заметим, что цепь <tex>(x \rightsquigarrow z)</tex>, полученная объединением цепей <tex>(x \rightsquigarrow p)</tex> и <tex>(p \rightsquigarrow z)</tex>, по определению будет дополняющей в паросочетании <tex>M</tex>, что приводит к противоречию, поскольку в паросочетании <tex>M</tex> из вершины <tex>x</tex> не существует дополняющей цепи.
 
:Тогда заметим, что цепь <tex>(x \rightsquigarrow z)</tex>, полученная объединением цепей <tex>(x \rightsquigarrow p)</tex> и <tex>(p \rightsquigarrow z)</tex>, по определению будет дополняющей в паросочетании <tex>M</tex>, что приводит к противоречию, поскольку в паросочетании <tex>M</tex> из вершины <tex>x</tex> не существует дополняющей цепи.
 
}}
 
}}
  
 
==Алгоритм==
 
==Алгоритм==
:Алгоритм просматривает все вершины графа по очереди, запуская из каждой обход (в глубину или в ширину), пытающийся найти увеличивающую цепь, начинающуюся в этой вершине.
+
Задан граф <tex>G\langle V, E \rangle</tex>, про который известно, что он двудольный, но разбиение не задано явно. Требуется найти наибольшее паросочетание в нём
:Задан двудольный граф <tex>G(V, E)</tex>, где <tex>V_1</tex> и <tex>V_2</tex> {{---}} его левая и правая доли соответственно.
 
:Просматриваем все вершины <tex>v</tex> первой доли графа <tex>u \in V_1</tex>:
 
:*Если текущая вершина  уже насыщена текущим паросочетанием (т.е. уже выбрано какое-то смежное ей ребро), то эту вершину пропускаем;
 
:*Иначе запускаем поиск увеличивающей цепи, начинающейся с этой вершины.
 
:Рассмотрим поиск увеличивающей цепи обходом в глубину.
 
:* Запускаем обход от вершины <tex>v</tex>.
 
:* Просматриваем все рёбра из этой вершины, пусть текущее ребро — <tex>(v, to)</tex>.
 
:* Если вершина <tex>to</tex> ещё не насыщена паросочетанием, то включаем ребро <tex>(v, to)</tex> в паросочетание и прекращаем поиск из вершины <tex>v</tex>.
 
:* Иначе, если вершина <tex>to</tex> уже насыщена каким-то ребром <tex>(p, to)</tex> и не посещена, то просто перейдем в нашем обходе в вершину <tex>p</tex>.
 
:** Пробуем найти часть увеличивающей цепи из вершины <tex>p</tex>.
 
:** Если получилось, то удаляем из паросочетания ребро <tex>(p, to)</tex>, а вместо него добавляем <tex>(v, to)</tex>
 
: Этот обход, запущенный из вершины <tex>v</tex>, либо найдет увеличивающую цепь, и тем самым насытит вершину, либо же такой увеличивающей цепи не найдёт (и, следовательно, эта вершина  уже не сможет стать насыщенной).
 
: После того, как все вершины <tex>u \in V_1</tex> будут просмотрены, текущее паросочетание будет максимальным.
 
: Корректность алгоритма следует из [[Теорема о максимальном паросочетании и дополняющих цепях|теоремы о максимальном паросочетании и дополняющих цепях]] и теоремы, описанной выше.<br>
 
  
==Релизация==
+
Алгоритм можно описать так: сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное.
  
: Граф <tex>G</tex> хранится списками смежности <tex>g[v][i]</tex>
+
В массиве <tex>\mathtt{matching}</tex> хранятся паросочетания <tex> (v, \mathtt{matching}[v]) </tex> (Если паросочетания с вершиной <tex> v </tex> не существует, то <tex> \mathtt{matching}[v]= -1</tex>). А <tex>used</tex> — обычный массив "посещённостей" вершин в обходе в глубину (он нужен, чтобы обход в глубину не заходил в одну вершину дважды).
: Функция <tex>dfs(v)</tex> {{---}} обход в глубину, возвращает <tex>true</tex> если есть увеличивающая цепь из вершины <tex>v</tex>.
+
Функция <tex> \mathrm{dfs} </tex> возвращает  <tex>true</tex>, если ей удалось найти увеличивающую цепь из вершины <tex>v</tex>, при этом считается, что эта функция уже произвела чередование паросочетания вдоль найденной цепи.
: В массиве <tex>matching</tex> хранятся паросочетания. Паросочетание есть ребро <tex>(i, matching[i])</tex>.
 
  
 +
Внутри функции просматриваются все рёбра, исходящие из вершины <tex>v</tex>, и затем проверяется: если это ребро ведёт в ненасыщенную вершину <tex> to</tex>, либо если эта вершина <tex>to</tex> насыщена, но удаётся найти увеличивающую цепь рекурсивным запуском из <tex>\mathtt{matching}[to]</tex>, то мы говорим, что мы нашли увеличивающую цепь, и перед возвратом из функции с результатом <tex>true</tex> производим чередование в текущем ребре: перенаправляем ребро, смежное с <tex>to</tex>, в вершину <tex> v</tex>.
  
  bool dfs(int v)  
+
В основной программе сначала указывается, что текущее паросочетание — пустое (массив <tex> \mathtt{matching}</tex> заполняется числами <tex>-1</tex>). Затем перебирается вершина <tex>v </tex>, и из неё запускается обход в глубину <tex> \mathrm{dfs} </tex>, предварительно обнулив массив <tex> used</tex>.
{
+
 
     if (used[v])
+
Стоит заметить, что размер паросочетания легко получить как число вызовов <tex> \mathrm{dfs} </tex> в основной программе, вернувших результат <tex> true </tex>. Само искомое максимальное паросочетание содержится в массиве <tex> \mathtt{matching}</tex>.
         return false;
+
После того, как все вершины <tex>v \in V</tex> будут просмотрены, текущее паросочетание будет максимальным.
+
Корректность алгоритма следует из [[Теорема о максимальном паросочетании и дополняющих цепях|теоремы о максимальном паросочетании и дополняющих цепях]] и теоремы, описанной выше.<br>
     used[v] = true;
+
 
     for (int i = 0; i < g[v].size(); i++)
+
==Реализация==
    {
+
 
        int to = g[v][i];
+
* Граф <tex>G\langle V, E \rangle</tex> хранится в матрице смежности <tex>g[i][j]</tex> размера <tex>n </tex> на <tex>n</tex>
         if (matching[to] == -1 || dfs(matching[to]))
+
*<tex>n  = |V|</tex>
        {
+
 
             matching[to] = v;
+
'''bool''' dfs(v: '''int'''):
             return true;
+
     '''if''' (used[v])
        }
+
         '''return''' ''false''
    }
+
     used[v] = ''true''
     return false;
+
     '''for''' to '''in''' g[v]
}
+
         '''if''' (matching[to] == -1 '''or''' dfs(matching[to])):
+
             matching[to] = v
  int main()
+
             '''return''' ''true''
{
+
     '''return''' ''false''
    ... чтение графа ...
+
 
     matching.assign (k, -1);
+
 
     for (int u = 0; u < n; u++)
+
  function '''main'''():
    {
+
     fill(matching, -1)
        used.assign(n, false);
+
     '''for''' i = 1..n
        dfs(u);
+
          fill(used, ''false'')
    }
+
          dfs(i)
+
     '''for''' i = 1..n
     for (int i = 0; i < k; i++)
+
          '''if''' (matching[i] != -1)
        if (matching[i] != -1)
+
              print(i, " ", matching[i])
            ... вывод ...
 
 
}
 
  
 
==Время работы==
 
==Время работы==
:Итак, алгоритм Куна можно представить как серию из  <tex>n_1</tex> запусков обхода в глубину на всём графе.
+
:Итак, алгоритм Куна можно представить как серию из  <tex>n</tex> запусков обхода в глубину на всём графе.
:Следовательно, всего этот алгоритм исполняется за время <tex>O(nm)</tex>, где <tex>m</tex> {{---}} количество ребер, что в худшем случае есть <tex>O(n^3)</tex>.
+
:Следовательно, всего этот алгоритм исполняется за время <tex>O(nm)</tex>, где <tex>m</tex> {{---}} количество рёбер, что в худшем случае есть <tex>O(n^3)</tex>
:Более точная оценка:
+
:Если явно задано разбиение графа на две доли размером <tex>n_1</tex> и <tex>n_2</tex>, то можно запускать <tex>\mathtt{dfs}</tex> только из вершин первой доли, поэтому весь алгоритм исполняется за время <tex>O(n_1m)</tex>. В худшем случае это составляет <tex>O(n_1^2n_2).</tex>
:В описанной выше реализации запуски обхода в глубину/ширину происходят только из вершин первой доли, поэтому весь алгоритм исполняется за время <tex>O(n_1m)</tex> , где <tex>n_1</tex> — число вершин первой доли. В худшем случае это составляет <tex>O(n_1^2n_2)</tex>,  где <tex>n_2</tex> — число вершин второй доли.
 
  
 
==Ссылки==
 
==Ссылки==
Строка 87: Строка 69:
 
* [[Алгоритм Форда-Фалкерсона для поиска максимального паросочетания|Алгоритм Форда-Фалкерсона для поиска максимального паросочетания]]
 
* [[Алгоритм Форда-Фалкерсона для поиска максимального паросочетания|Алгоритм Форда-Фалкерсона для поиска максимального паросочетания]]
  
==Источники==
+
==Источники информации==
:[http://e-maxx.ru/algo/kuhn_matching MAXimal :: algo :: Алгоритм Куна нахождения наибольшего паросочетания]<br>
+
*[http://e-maxx.ru/algo/kuhn_matching MAXimal :: algo :: Алгоритм Куна нахождения наибольшего паросочетания]<br>
: Асанов М., Баранский В., Расин В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы — СПб.: Издательство "Лань", 2010. — 291 стр.
+
* Асанов М., Баранский В., Расин В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы — СПб.: Издательство "Лань", 2010. — 291 стр.
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Задача о паросочетании]]
 
[[Категория: Задача о паросочетании]]

Текущая версия на 22:18, 22 января 2017

Теорема[править]

Теорема:
Если из вершины [math]x[/math] не существует дополняющей цепи относительно паросочетания [math]M[/math] и паросочетание [math]M'[/math] получается из [math]M[/math] изменением вдоль дополняющей цепи, тогда из [math]x[/math] не существует дополняющей цепи в [math]M'[/math].
Доказательство:
[math]\triangleright[/math]
Рисунок 1.
Рисунок 2.
Пунктиром обозначен путь между двумя вершинами. Ребро красного цвета лежит в паросочетании, а черного - нет.
Доказательство от противного.

Допустим в паросочетание внесли изменения вдоль дополняющей цепи [math](y \rightsquigarrow z)[/math] и из вершины [math]x[/math] появилась дополняющая цепь.
Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из [math]x[/math] существовала и в исходном паросочетании.

Пусть [math]p[/math] – ближайшая к [math]x[/math] вершина, которая принадлежит и новой дополняющей цепи и цепи [math](y \rightsquigarrow z)[/math].
Тогда [math]MP[/math] – последнее ребро на отрезке [math](y \rightsquigarrow p)[/math] цепи [math](y \rightsquigarrow z)[/math], [math]NP[/math] – последнее ребро на отрезке [math](z \rightsquigarrow p)[/math] цепи [math](y \rightsquigarrow z)[/math], [math]QP[/math] - последнее ребро лежащее на отрезке [math](x \rightsquigarrow p)[/math] новой дополняющей цепи(см. Рисунок 1).

Допустим [math]MP[/math] принадлежит паросочетанию [math]M'[/math], тогда [math]NP[/math] ему не принадлежит.
(Случай, когда [math]NP[/math] принадлежит паросочетанию [math]M'[/math] полностью симметричен.)

Поскольку паросочетание [math]M'[/math] получается из [math]M[/math] изменением вдоль дополняющей цепи [math](y \rightsquigarrow z)[/math], в паросочетание [math]M[/math] входило ребро [math]NP[/math], а ребро [math]MP[/math] нет.
Кроме того, ребро [math]QP[/math] не лежит ни в исходном паросочетании [math]M[/math], ни в паросочетании [math]M'[/math], в противном случае оказалось бы, что вершина [math]p[/math] инцидентна нескольким рёбрам из паросочетания, что противоречит определению паросочетания.

Тогда заметим, что цепь [math](x \rightsquigarrow z)[/math], полученная объединением цепей [math](x \rightsquigarrow p)[/math] и [math](p \rightsquigarrow z)[/math], по определению будет дополняющей в паросочетании [math]M[/math], что приводит к противоречию, поскольку в паросочетании [math]M[/math] из вершины [math]x[/math] не существует дополняющей цепи.
[math]\triangleleft[/math]

Алгоритм[править]

Задан граф [math]G\langle V, E \rangle[/math], про который известно, что он двудольный, но разбиение не задано явно. Требуется найти наибольшее паросочетание в нём

Алгоритм можно описать так: сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное.

В массиве [math]\mathtt{matching}[/math] хранятся паросочетания [math] (v, \mathtt{matching}[v]) [/math] (Если паросочетания с вершиной [math] v [/math] не существует, то [math] \mathtt{matching}[v]= -1[/math]). А [math]used[/math] — обычный массив "посещённостей" вершин в обходе в глубину (он нужен, чтобы обход в глубину не заходил в одну вершину дважды). Функция [math] \mathrm{dfs} [/math] возвращает [math]true[/math], если ей удалось найти увеличивающую цепь из вершины [math]v[/math], при этом считается, что эта функция уже произвела чередование паросочетания вдоль найденной цепи.

Внутри функции просматриваются все рёбра, исходящие из вершины [math]v[/math], и затем проверяется: если это ребро ведёт в ненасыщенную вершину [math] to[/math], либо если эта вершина [math]to[/math] насыщена, но удаётся найти увеличивающую цепь рекурсивным запуском из [math]\mathtt{matching}[to][/math], то мы говорим, что мы нашли увеличивающую цепь, и перед возвратом из функции с результатом [math]true[/math] производим чередование в текущем ребре: перенаправляем ребро, смежное с [math]to[/math], в вершину [math] v[/math].

В основной программе сначала указывается, что текущее паросочетание — пустое (массив [math] \mathtt{matching}[/math] заполняется числами [math]-1[/math]). Затем перебирается вершина [math]v [/math], и из неё запускается обход в глубину [math] \mathrm{dfs} [/math], предварительно обнулив массив [math] used[/math].

Стоит заметить, что размер паросочетания легко получить как число вызовов [math] \mathrm{dfs} [/math] в основной программе, вернувших результат [math] true [/math]. Само искомое максимальное паросочетание содержится в массиве [math] \mathtt{matching}[/math]. После того, как все вершины [math]v \in V[/math] будут просмотрены, текущее паросочетание будет максимальным. Корректность алгоритма следует из теоремы о максимальном паросочетании и дополняющих цепях и теоремы, описанной выше.

Реализация[править]

  • Граф [math]G\langle V, E \rangle[/math] хранится в матрице смежности [math]g[i][j][/math] размера [math]n [/math] на [math]n[/math]
  • [math]n = |V|[/math]
bool dfs(v: int):
    if (used[v])
        return false
    used[v] = true
    for to in g[v]
        if (matching[to] == -1 or dfs(matching[to])):
            matching[to] = v
            return true 
    return false


function main():
    fill(matching, -1)
    for i = 1..n
         fill(used, false)
         dfs(i)
    for i = 1..n
         if (matching[i] != -1)
              print(i, " ", matching[i])

Время работы[править]

Итак, алгоритм Куна можно представить как серию из [math]n[/math] запусков обхода в глубину на всём графе.
Следовательно, всего этот алгоритм исполняется за время [math]O(nm)[/math], где [math]m[/math] — количество рёбер, что в худшем случае есть [math]O(n^3)[/math]
Если явно задано разбиение графа на две доли размером [math]n_1[/math] и [math]n_2[/math], то можно запускать [math]\mathtt{dfs}[/math] только из вершин первой доли, поэтому весь алгоритм исполняется за время [math]O(n_1m)[/math]. В худшем случае это составляет [math]O(n_1^2n_2).[/math]

Ссылки[править]

Источники информации[править]