Изменения

Перейти к: навигация, поиск
м
Алгоритм
{{Теорема
|statement=
Если из вершины <tex>x</tex> не существует [[Теорема о максимальном паросочетании и дополняющих цепях|дополняющей цепи ]] относительно паросочетания <tex>M</tex> и паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи, тогда из <tex>x</tex> не существует дополняющей цепи в <tex>M'</tex>.
|proof=
[[Файл:Kuhn2.png|thumb|right|300x300px|Рисунок 1.]]
: Допустим в паросочетание внесли изменения вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex> и из вершины <tex>x</tex> появилась дополняющая цепь.
: Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из <tex>x</tex> существовала и в исходном паросочетании.<br><br>
: Пусть <tex>p</tex> {{---}} ближайшая к <tex>x</tex> вершина, которая принадлежит и новой дополняющей цепи и цепи <tex>(y \rightsquigarrow z)</tex>.: Тогда <tex>MP</tex> - последнее ребро на отрезке <tex>(y \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>NP</tex> - последнее ребро на отрезке <tex>(z \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>QP</tex> - последнее ребро лежащее на отрезке <tex>(x \rightsquigarrow p)</tex> новой дополняющей цепи(см. Рисунок 1).<br><br>
: Допустим <tex>MP</tex> принадлежит паросочетанию <tex>M'</tex>, тогда <tex>NP</tex> ему не принадлежит.<br>
:: (Случай, когда <tex>NP</tex> принадлежит паросочетанию <tex>M'</tex> полностью симметричен.)<br><br>
: Поскольку паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex>, в паросочетание <tex>M</tex> входило ребро <tex>NP</tex>, а ребро <tex>MP</tex> нет.
: Кроме того, ребро <tex>QP</tex> не лежит ни в исходном паросочетании <tex>M</tex>, ни в паросочетании <tex>M'</tex>, в противном случае оказалось бы, что вершина <tex>p</tex> инцидентна нескольким ребрам рёбрам из паросочетания, что противоречит определению паросочетания.<br><br>
:Тогда заметим, что цепь <tex>(x \rightsquigarrow z)</tex>, полученная объединением цепей <tex>(x \rightsquigarrow p)</tex> и <tex>(p \rightsquigarrow z)</tex>, по определению будет дополняющей в паросочетании <tex>M</tex>, что приводит к противоречию, поскольку в паросочетании <tex>M</tex> из вершины <tex>x</tex> не существует дополняющей цепи.
}}
==Алгоритм==
Задан граф <tex>G(\langle V, E)\rangle</tex>, про который известно, что он двудольный, но разбиение не задано явно.Требуется найти наибольшее паросочетание в немнём
Алгоритм можно описать так: сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное.
В массиве <tex>\mathtt{matching}</tex> хранятся паросочетания <tex> (v, \mathtt{matching}[v]) </tex> (Если паросочетания с вершиной <tex> v </tex> не существует, то <tex> \mathtt{matching}[v] = -1</tex> = -1). А <tex>used</tex> - обычный массив "посещённостей" вершин в обходе в глубину (он нужен, чтобы обход в глубину не заходил в одну вершину дважды).
Функция <tex> \mathrm{dfs} </tex> возвращает <tex>true</tex>, если ей удалось найти увеличивающую цепь из вершины <tex>v</tex>, при этом считается, что эта функция уже произвела чередование паросочетания вдоль найденной цепи.
Внутри функции просматриваются все рёбра, исходящие из вершины <tex>v первой доли</tex>, и затем проверяется: если это ребро ведёт в ненасыщенную вершину <tex> to</tex>, либо если эта вершина <tex>to</tex> насыщена, но удаётся найти увеличивающую цепь рекурсивным запуском из <tex>mt\mathtt{matching}[to]</tex>, то мы говорим, что мы нашли увеличивающую цепь, и перед возвратом из функции с результатом <tex>true</tex> производим чередование в текущем ребре: перенаправляем ребро, смежное с <tex>to</tex>, в вершину <tex> v</tex>.
В основной программе сначала указывается, что текущее паросочетание — пустое (список массив <tex> mt\mathtt{matching}</tex> заполняется числами <tex>-1</tex>). Затем перебирается вершина <tex>v </tex> первой доли, и из неё запускается обход в глубину <tex> \mathrm{dfs} </tex>, предварительно обнулив массив <tex> used</tex>.
Стоит заметить, что размер паросочетания легко получить как число вызовов <tex> \mathrm{dfs} </tex> в основной программе, вернувших результат <tex> true </tex>. Само искомое максимальное паросочетание содержится в массиве <tex> mt \mathtt{matching}</tex>.
После того, как все вершины <tex>v \in V</tex> будут просмотрены, текущее паросочетание будет максимальным.
Корректность алгоритма следует из [[Теорема о максимальном паросочетании и дополняющих цепях|теоремы о максимальном паросочетании и дополняющих цепях]] и теоремы, описанной выше.<br>
==Реализация==
* Граф <tex>G\langle V, E \rangle</tex> хранится списками в матрице смежности <tex>g[vi][ij]</tex>* Функция <tex>dfs(v)</tex> {{---}} обход в глубину, возвращает размера <tex>truen </tex>, если есть увеличивающая цепь из вершины на <tex>vn</tex>.* В массиве <tex>matching</tex> хранятся паросочетания. Паросочетание есть ребро <tex>(i, matching[i])n = |V|</tex>.
  '''bool''' '''dfs'''(v: '''int'''): '''if''' (used[v]): '''return''' '''false''' used[v] = '''true'''; '''for''' to '''in''' g[v]: '''if ''' (matching[to] == -1 '''or''' dfs(matching[to])):
matching[to] = v
'''return''' '''true''' '''return''' '''false'''
'''function''' '''main'''(): '''fill'''(matching, -1) '''for''' v '''in''' V:i = 1..n fill(used, '''false''') '''dfs'''(vi) '''for''' v '''in''' V:i = 1..n '''if''' (matching[vi] != -1): '''print'''(vi, " ", matching[vi])
==Время работы==
:Итак, алгоритм Куна можно представить как серию из <tex>n_1n</tex> запусков обхода в глубину на всём графе.:Следовательно, всего этот алгоритм исполняется за время <tex>O(nm)</tex>, где <tex>m</tex> {{---}} количество реберрёбер, что в худшем случае есть <tex>O(n^3)</tex>.:Более точная оценка::В описанной выше реализации запуски обхода в глубинуЕсли явно задано разбиение графа на две доли размером <tex>n_1</tex> и <tex>n_2</tex>, то можно запускать <tex>\mathtt{dfs}</ширину происходят tex> только из вершин первой доли, поэтому весь алгоритм исполняется за время <tex>O(n_1m)</tex> , где <tex>n_1</tex> — число вершин первой доли. В худшем случае это составляет <tex>O(n_1^2n_2).</tex>, где <tex>n_2</tex> — число вершин второй доли.
==Ссылки==
* [[Алгоритм Форда-Фалкерсона для поиска максимального паросочетания|Алгоритм Форда-Фалкерсона для поиска максимального паросочетания]]
==Источникиинформации==
*[http://e-maxx.ru/algo/kuhn_matching MAXimal :: algo :: Алгоритм Куна нахождения наибольшего паросочетания]<br>
* Асанов М., Баранский В., Расин В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы — СПб.: Издательство "Лань", 2010. — 291 стр.
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Задача о паросочетании]]

Навигация