Изменения

Перейти к: навигация, поиск

Алгоритм Фарака-Колтона и Бендера

3 байта добавлено, 23:40, 26 февраля 2016
Нет описания правки
Данный алгоритм основывается на методе решения задачи <tex>RMQ</tex> с помощью [[Решение RMQ с помощью разреженной таблицы|разреженной таблицы (sparse table, ST)]] за <tex>\langle O(N \log N),O(1) \rangle</tex>.
Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность <tex>A_i</tex> на блоки длины <tex>\fracdfrac{1}{2}\log_2 N</tex>. Для каждого блока вычислим минимум на нём и определим <tex>B_i</tex> как позицию минимального элемента в <tex>i</tex>-ом блоке.
|id=kindscount
|statement=Существует <tex>O(\sqrt N)</tex> различных типов нормализованных блоков.
|proof=Соседние элементы в блоках отличаются на <tex>\pm 1</tex>. Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен <tex>\pm 1</tex>-вектором длины <tex> (\fracdfrac{1}{2} \log_2 N) - 1</tex>. Таких векторов <tex>2^{(\frac{1}{2} \log_2 N) - 1} = O(\sqrt N)</tex>.
}}
Осталось создать <tex>O(\sqrt N)</tex> таблиц {{---}} по одной для каждого типа блока. В такую таблицу необходимо занести предподсчитанные ответы на все возможные запросы минимума внутри блока соответствующего типа, которых <tex>(\fracdfrac{1}{2}\log_2 N)^2 = O(\log^2 N)</tex>. Для каждого блока в <tex>B_i</tex> необходимо заранее вычислить его тип. Таким образом мы получили возможность отвечать на запрос минимума по любой части блока за <tex>O(1)</tex>, затратив на предподсчёт <tex>O(\sqrt N \log^2 N)</tex> времени.
Анонимный участник

Навигация