Алгоритм Флойда — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 1: Строка 1:
'''Алгоритм Флойда (алгоритм Флойда–Уоршелла)''' — динамический алгоритм нахождения длин кратчайших путей между всеми парами вершин взвешенного ориентированного графа. Разработан в 1962 году.
+
'''Алгоритм Флойда (алгоритм Флойда–Уоршелла)''' {{---}} алгоритм нахождения длин кратчайших путей между всеми парами вершин во взвешенном ориентированном графе. Работает корректно, если в графе нет циклов отрицательной величины, а в случае, когда такой цикл есть, позволяет найти хотя бы один такой цикл. Этот алгоритм работает в течение времени <tex> \Theta(n^3) </tex> и использует <tex> \Theta(n^2) </tex> памяти. Разработан в 1962 году.
  
 
== Алгоритм ==
 
== Алгоритм ==
 
[[Файл:Floyd.png|right|thumb|Текущий (синий) путь и потенциально более короткий (красный)]]
 
[[Файл:Floyd.png|right|thumb|Текущий (синий) путь и потенциально более короткий (красный)]]
Пусть дан граф <tex>G(V,E)</tex>; <tex>\omega_{uv} =
+
 
 +
=== Постановка задачи ===
 +
 
 +
Дан взвешенный ориентированный граф <tex> G(V, E) </tex>; <tex>\omega_{uv} =
 
\begin{cases}
 
\begin{cases}
 
\text{weight of }uv ,& \text{if } uv \in E \\
 
\text{weight of }uv ,& \text{if } uv \in E \\
 
+\infty ,& \text{if } uv \notin E
 
+\infty ,& \text{if } uv \notin E
\end{cases}</tex>; вершины пронумерованы от <tex>1</tex> до <tex>n</tex>.
+
\end{cases}</tex>, в котором вершины пронумерованы от <tex>1</tex> до <tex>n</tex>. Требуется найти матрицу кратчайших расстояний <tex> d </tex>, в которой элемент <tex> d_{ij} </tex> либо равен длине кратчайшего пути из <tex> i </tex> в <tex> j </tex>, либо равен <tex> +\infty </tex>, если вершина <tex> j </tex> не достижима из <tex> i </tex>.
 +
 
 +
=== Описание ===
  
Обозначим длину кратчайшего пути между вершинами <tex>u</tex> и <tex>v</tex>, содержащего, помимо самих вершин <tex>u</tex> и <tex>v</tex>, только вершины с номерами <tex>1 .. i</tex> как <tex>d_{uv}^i</tex>.
+
Обозначим длину кратчайшего пути между вершинами <tex> u </tex> и <tex> v </tex>, содержащего, помимо <tex>u</tex> и <tex>v</tex>, только вершины из множества <tex> \{ 1 .. i \} </tex> как <tex>d_{uv}^{(i)}</tex>, <tex>d_{uv}^{(0)} = \omega_{uv}</tex>.
Понятно, что <tex>d_{uv}^0 = \omega_{uv}</tex>.
 
  
На каждом шаге алгоритма, мы будем брать очередную вершину (пусть, её номер <tex>i</tex>) и для всех пар вершин <tex>u</tex> и <tex>v</tex> вычислять <tex>d_{uv}^i = min(d_{uv}^{i-1}, d_{ui}^{i-1} + d_{iv}^{i-1})</tex>. Т.е., если кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины с номерами <tex>1 .. i</tex>, проходит через вершину <tex>i</tex>, то пройдём сначала из <tex>u</tex> в <tex>i</tex>, затем из <tex>i</tex> в <tex>v</tex>, иначе ничего менять не будем.
+
На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер {{---}} <tex> i </tex>) и для всех пар вершин <tex>u</tex> и <tex>v</tex> вычислять <tex> d_{uv}^{(i)} = min(d_{uv}^{(i-1)}, d_{ui}^{(i-1)} + d_{iv}^{(i-1)}) </tex>. То есть, если кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex>, проходит через вершину <tex>i</tex>, то кратчайшим путем из <tex> u </tex> в <tex> v </tex> является кратчайший путь из <tex> u </tex> в <tex> i </tex>, объединенный с кратчайшим путем из <tex> i </tex> в <tex> v </tex>. В противном случае, когда этот путь не содержит вершины <tex> i </tex>, кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex> является кратчайшим путем из <tex>u</tex> в <tex>v</tex>, содержащим только вершины из множества <tex> \{ 1 .. i-1 \} </tex>.
  
 
=== Код (в первом приближении) ===
 
=== Код (в первом приближении) ===
 
   # Инициализация
 
   # Инициализация
   d[0] = w
+
   <tex dpi = "105"> d^{(0)} = w </tex>
 
   # Основная часть
 
   # Основная часть
 
   for i in {1..n}:
 
   for i in {1..n}:
 
     for u in {1..n}:
 
     for u in {1..n}:
 
       for v in {1..n}:
 
       for v in {1..n}:
         d[i][u][v] = min(d[i-1][u][v], d[i-1][u][i] + d[i-1][i][v])
+
         <tex dpi = "105" > d^{(i)}_{uv} = min(d^{(i - 1)}_{uv}, d^{(i - 1)}_{ui} + d^{(i - 1)}_{iv}) </tex>
 +
 +
В итоге получаем, что матрица <tex> d^{(n)} </tex> и является искомой матрицей кратчайших путей, поскольку содержит в себе длины кратчайших путей между всеми парами вершин, имеющих в качестве промежуточных вершин вершины из множества <tex> \{ 1..n \} </tex>, что есть попросту все вершины графа. Такая реализация работает за <tex> \Theta(n^3) </tex> времени и использует <tex> \Theta(n^3) </tex> памяти.
  
 
=== Код (окончательный) ===
 
=== Код (окончательный) ===
Можно обойтись без первого индекса в массиве, т.е. использовать двумерный массив <tex>d_{uv}</tex>. В процессе работы алгоритма поддерживается инвариант <tex>\rho(u, v) \le d_{uv} \le d_{uv}^i</tex>, а значит <tex>d_{uv}</tex> тоже в итоге сойдутся к решению.
+
Утверждается, что можно избавиться от одной размерности в массиве <tex> d </tex>, т.е. использовать двумерный массив <tex>d_{uv}</tex>. В процессе работы алгоритма поддерживается инвариант <tex>\rho(u, v) \le d_{uv} \le d_{uv}^i</tex>, а значит <tex>d_{uv}</tex> тоже в итоге сойдутся к решению.
  
 
   # Инициализация
 
   # Инициализация

Версия 03:45, 1 ноября 2011

Алгоритм Флойда (алгоритм Флойда–Уоршелла) — алгоритм нахождения длин кратчайших путей между всеми парами вершин во взвешенном ориентированном графе. Работает корректно, если в графе нет циклов отрицательной величины, а в случае, когда такой цикл есть, позволяет найти хотя бы один такой цикл. Этот алгоритм работает в течение времени [math] \Theta(n^3) [/math] и использует [math] \Theta(n^2) [/math] памяти. Разработан в 1962 году.

Алгоритм

Текущий (синий) путь и потенциально более короткий (красный)

Постановка задачи

Дан взвешенный ориентированный граф [math] G(V, E) [/math]; [math]\omega_{uv} = \begin{cases} \text{weight of }uv ,& \text{if } uv \in E \\ +\infty ,& \text{if } uv \notin E \end{cases}[/math], в котором вершины пронумерованы от [math]1[/math] до [math]n[/math]. Требуется найти матрицу кратчайших расстояний [math] d [/math], в которой элемент [math] d_{ij} [/math] либо равен длине кратчайшего пути из [math] i [/math] в [math] j [/math], либо равен [math] +\infty [/math], если вершина [math] j [/math] не достижима из [math] i [/math].

Описание

Обозначим длину кратчайшего пути между вершинами [math] u [/math] и [math] v [/math], содержащего, помимо [math]u[/math] и [math]v[/math], только вершины из множества [math] \{ 1 .. i \} [/math] как [math]d_{uv}^{(i)}[/math], [math]d_{uv}^{(0)} = \omega_{uv}[/math].

На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер — [math] i [/math]) и для всех пар вершин [math]u[/math] и [math]v[/math] вычислять [math] d_{uv}^{(i)} = min(d_{uv}^{(i-1)}, d_{ui}^{(i-1)} + d_{iv}^{(i-1)}) [/math]. То есть, если кратчайший путь из [math]u[/math] в [math]v[/math], содержащий только вершины из множества [math] \{ 1 .. i \} [/math], проходит через вершину [math]i[/math], то кратчайшим путем из [math] u [/math] в [math] v [/math] является кратчайший путь из [math] u [/math] в [math] i [/math], объединенный с кратчайшим путем из [math] i [/math] в [math] v [/math]. В противном случае, когда этот путь не содержит вершины [math] i [/math], кратчайший путь из [math]u[/math] в [math]v[/math], содержащий только вершины из множества [math] \{ 1 .. i \} [/math] является кратчайшим путем из [math]u[/math] в [math]v[/math], содержащим только вершины из множества [math] \{ 1 .. i-1 \} [/math].

Код (в первом приближении)

 # Инициализация
 [math] d^{(0)} = w [/math]
 # Основная часть
 for i in {1..n}:
   for u in {1..n}:
     for v in {1..n}:
       [math] d^{(i)}_{uv} = min(d^{(i - 1)}_{uv}, d^{(i - 1)}_{ui} + d^{(i - 1)}_{iv}) [/math]

В итоге получаем, что матрица [math] d^{(n)} [/math] и является искомой матрицей кратчайших путей, поскольку содержит в себе длины кратчайших путей между всеми парами вершин, имеющих в качестве промежуточных вершин вершины из множества [math] \{ 1..n \} [/math], что есть попросту все вершины графа. Такая реализация работает за [math] \Theta(n^3) [/math] времени и использует [math] \Theta(n^3) [/math] памяти.

Код (окончательный)

Утверждается, что можно избавиться от одной размерности в массиве [math] d [/math], т.е. использовать двумерный массив [math]d_{uv}[/math]. В процессе работы алгоритма поддерживается инвариант [math]\rho(u, v) \le d_{uv} \le d_{uv}^i[/math], а значит [math]d_{uv}[/math] тоже в итоге сойдутся к решению.

 # Инициализация
 d = w
 # Основная часть
 for i in {1..n}:
   for u in {1..n}:
     for v in {1..n}:
       d[u][v] = min(d[u][v], d[u][i] + d[i][v])

Алгоритм всегда завершит работу за [math]O(V^3)[/math] — как несложно видеть, три вложенных цикла выполняются по [math]n[/math] раз каждый.

Пример работы

[math]i = 0[/math] [math]i = 1[/math] [math]i = 2[/math] [math]i = 3 [/math] [math]i = 4[/math]
Floyd step0.png Floyd step1.png Floyd step2.png Floyd step3.png Floyd step4.png
[math]\begin{pmatrix} \times & 1 & 6 & \infty \\ \infty & \times & 4 & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math] [math]\begin{pmatrix} \times & 1 & 6 & \infty \\ \infty & \times & 4 & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math] [math]\begin{pmatrix} \times & 1 & \bf{5} & \bf{2} \\ \infty & \times & 4 & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math] [math]\begin{pmatrix} \times & 1 & 5 & 2 \\ \infty & \times & 4 & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math] [math]\begin{pmatrix} \times & 1 & \bf{3} & 2 \\ \infty & \times & \bf{2} & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math]

Вывод кратчайшего пути

Алгоритм Флойда легко модифицировать таким образом, чтобы он возвращал не только длину кратчайшего пути, но и сам путь. Для этого достаточно завести дополнительный массив [math]t_{uv}[/math], в котором будет храниться номер вершины, в которую надо пойти следующей, чтобы дойти из [math]u[/math] в [math]v[/math] по кратчайшему пути.

Модифицированный алгоритм

 # Инициализация
 d = w
 t[u][v] = v если есть ребро uv
 # Основная часть
 for i in {1..n}:
   for u in {1..n}:
     for v in {1..n}:
       if (d[u][i] + d[i][v]) < d[u][v]: 
         d[u][v] = d[u][i] + d[i][v]
         t[u][v] = t[u][i]
 # Вывод кратчайшего пути
 def get_shortest_path(u, v):
   if d[u][v] == inf:
       raise NoPath # Из u в v пути нет
   c = u
   while c != v:
     yield c
     c = t[c][v]
   yield v

Floyd path.png

Литература

  • Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)