Изменения

Перейти к: навигация, поиск
Корректность алгоритма
==Корректность алгоритма==
Обозначим как <tex>p'</tex> путь <tex>p</tex> из <tex>s</tex> в <tex>t</tex> без первого и последнего ребра. Пусть онявляется дополняющей цепью для исходного графа <tex>G</tex> , и обратно — т.е. любая дополняющая цепь графа пусть также существование дополняющей цепи в графе <tex>G</tex> является путем приводит к существованию пути <tex>p'</tex>. Тогда из [[Теорема о максимальном паросочетании и дополняющих цепях|теоремы]]: если мы на каком-то шаге можем найти новый путь, т.е дополняющую цепь, то мы увеличиваем текущее паросочетание. Если путь найти мы уже не можем, значит дополняющих цепей в графе нет и текущее паросочетание — искомое. Осталось доказать, что путь <tex>p'</tex> сделанное предположение действительно всегда является дополняющей цепьюверно.
Т.к. <tex>p'</tex> — путь в двудольном графе, начинающийся в <tex>L</tex> и заканчивающийся в <tex>R</tex>, то он нечетной длины. Вершины в нем не повторяются (т.к. это путь в дереве поиска в глубину). Рассмотрим текущее паросочетание. Согласно поддерживаемому инварианту <tex>(R,L)</tex>-ребра в паросочетании, а <tex>(L,R)</tex>-ребра {{---}} нет. В таком случае ребра пути <tex>p'</tex> можно пронумеровать так, чтобы нечетные ребра были свободными, а четные — покрытыми ребрами текущего паросочетания. Заметим, что путь может начинаться и заканчиваться только в свободной вершине, т. к. из <tex>s</tex> ведут ребра только в свободные вершины и только из свободных вершин ведут ребра в <tex>t</tex>. Итак, теперь ясно, что <tex>p'</tex> — дополняющая цепь для графа <tex>G</tex>.
Обратно, пусть существует дополняющая цепь в графе <tex>G</tex>. В одной из ориентаций она начинается в какой-то свободной вершине <tex>u \in L\</tex> и заканчивается в свободной вершине <tex>v \in R\</tex>, далее будем рассматривать именно эту ориентацию. Ребра поочередно то не лежат, то лежат в паросочетании, значит в нашей ориентации эти ребра поочередно ориентированы то <tex>(L, R)</tex>, то <tex>(R,L)</tex>. Заметим что эта ориентация совпадает с изначально рассматриваемойориентацией ребер на пути, а значит в нашем ориентированом графе существует путь из свободной вершины <tex>u \in L</tex> в свободную вершину <tex>v \in R</tex>. Нo каждая свободная вершина из <tex>L</tex> связана ребром с <tex>s</tex> в графе <tex>G'</tex>, аналогично каждая свободная вершина из <tex>R</tex> связана ребром с <tex>t</tex>. Не сложно заметить, что, в таком случае, <tex>t</tex> достижим из <tex>s</tex>, а значит в процессе поиска в глубину будет найден некий <tex>s \rightarrow t</tex> путь <tex>p</tex> и соответствующий ему <tex>p'</tex>.
Утверждение доказано.
Анонимный участник

Навигация