Изменения

Перейти к: навигация, поиск

Алгоритм Эрли

2 байта добавлено, 02:51, 19 января 2012
Корректность алгоритма
1. Включаем по правилу 1.<br/>
Тогда <tex>\alpha = \alpha' a_{j} , [A \rightarrow \alpha' \cdot a_{j} \beta, i] \in I_{j-1}</tex>. По предположению, <tex>\alpha' \Rightarrow^* a_{i+1}...a_{j-1} </tex> , и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S' \Rightarrow^* \gamma' A \delta', \gamma' \Rightarrow^* a_1...a_{i} </tex>. Значит, <tex> \alpha = \alpha' a_{j} \Rightarrow^* a_{i+1}...a_{j} </tex> и при <tex>\gamma = \gamma', \delta = \delta'</tex> <tex>[A \rightarrow \alpha \cdot \beta, i] \in I_j</tex>.
2. Включаем по правилу 2.<br/>
3. Включаем по правилу 3.<br/>
Тогда <tex>\alpha = \varepsilon, i = j, [B \rightarrow \alpha' \cdot A \eta, k] \in I_{j}, A \Rightarrow \beta</tex>. По предположению <tex>\alpha' \Rightarrow^* a_{k+1}...a_{i}</tex> , и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S' \Rightarrow^* \gamma' B \delta', \gamma' \Rightarrow^* a_1...a_{k} </tex>. Значит, при <tex>\gamma = \gamma' \alpha', \delta = \eta \delta' </tex> выполнено <tex> S' \Rightarrow^* \gamma A \delta</tex>, следовательно <tex>[A \rightarrow \alpha \cdot \beta, i] \in I_j</tex>.
=====В каждый список попадут все ситуации, которые ему принадлежат:=====
1. <tex>\alpha</tex> оканчивается терминалом.<br/>
<tex>\alpha = \alpha' c</tex>. <tex>\alpha \Rightarrow^*a_{i+1}...a_{j}</tex>, значит <tex>c = a_{j}</tex>. Рассмотрим набор <tex>\tau' = \langle \alpha', a_{j} \beta, \gamma, \delta, A, i, j-1 \rangle </tex>. <tex>(A \rightarrow \alpha' a_{j} \beta) \in P</tex>, следовательно ранг <tex>\tau'</tex> равен <tex>r - 2</tex>, так как <tex>\tau_{S'}(\tau) = \tau_{S'}(\tau'), \tau_{\gamma}(\tau) = \tau_{\gamma}(\tau'), \tau_{\alpha}(\tau) = \tau_{\alpha}(\tau')</tex>. Значит, по предположению <tex>[A \rightarrow \alpha' \cdot a_{j} \beta, i] \in I_{j-1}</tex> , и <tex>[A \rightarrow \alpha \cdot \beta, i] </tex> будет добавлена в <tex>I_{j}</tex> по правилу 1.
2. <tex>\alpha</tex> оканчивается нетерминалом.<br/>
Т.к. <tex>\tau_{S'}(\tau) > 0</tex>, <tex> \exists B, \gamma', \gamma'', \delta', \delta'' : S' \Rightarrow^* \gamma' B \delta' \Rightarrow \gamma' \gamma'' A \delta' \delta''</tex>, где <tex>(B \rightarrow \gamma'' A \delta'') \in P</tex>. Рассмотрим набор <tex>\tau' = \langle \gamma'', A \delta'', \gamma', \delta', B, k, j \rangle</tex>, где <tex>k</tex> такое, что <tex>\gamma' \Rightarrow^* a_1...a_{k}, \gamma'' \Rightarrow^* a_{k+1}...a_{j}</tex>.
Пусть длина кратчайшего вывода <tex>\gamma' \Rightarrow^*a_{1}...a_{k}</tex> равна <tex>n_1</tex>, а длина кратчайшего вывода <tex> \gamma'' \Rightarrow^* a_{k+1}...a_{j}</tex> равна <tex>n_2</tex>.<br/>
Найдем Найдём ранг <tex>\tau'</tex>. <tex>\tau_{S'}(\tau') = \tau_{S'}(\tau) - 1, \tau_{\gamma}(\tau') = n_1, \tau_{\alpha}(\tau') = n_2</tex>. <tex>\tau_{\alpha}(\tau) = 0, \tau_{\gamma}(\tau) = n_1 + n_2</tex>, следовательно ранг <tex>\tau'</tex> равен <tex>r - 1</tex>. Значит, по предположению <tex>[B \rightarrow \gamma'' \cdot A \delta'', k] \in I_{j}</tex>, следовательно по правилу 3 <tex>[A \rightarrow \cdot \beta, i] </tex> будет добавлена в <tex>I_{j}</tex>.
}}
Анонимный участник

Навигация