Изменения

Перейти к: навигация, поиск

Алгоритм масштабирования потока

1111 байт добавлено, 19:21, 4 сентября 2022
м
rollbackEdits.php mass rollback
== Алгоритм ==
Пусть дана [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|сеть]] <tex> G </tex>, все ребра рёбра которой имеют целочисленную [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|пропускную способность]]. Обозначим за <tex> U </tex> максимальную пропускную способность: <tex> U = \max\limits_{(u, v) \in E} c(u, v) </tex>.
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BF.D0.BE.D1.82.D0.BE.D0.BA.D0.B0|поток ]] по ним, а затем по всем остальным. Для этого воспользуемся масштабом <tex> \Delta </tex>. Изначально положим <tex> \Delta = 2^{\lfloor \log_2 U \rfloor} </tex>.
Если записать пропускную способность любого ребра На каждой итерации в двоичном виде[[Дополняющая_сеть, то длина полученной битовой последовательности _дополняющий_путь|дополняющей сети]] алгоритм находит [[Дополняющая_сеть,_дополняющий_путь|дополняющие пути]] с пропускной способностью не будет превышать меньшей <tex> \lfloor \log_2 U \rfloor + 1 = n + 1 Delta </tex> бит, а значение пропускной способности определяется формулой:и увеличивает поток вдоль них.Уменьшив масштаб <tex> c(u, v) = \sum\limits_{i = 0}^n a_i(u, v) \times Delta </tex> в <tex> 2^i, a_i(u, v) \in \{0, 1\} </tex>раза, переходит к следующей итерации.
Методом [[Алгоритм_Форда-ФалкерсонаОчевидно,_реализация_с_помощью_поиска_в_глубину|Форда-Фалкерсона]] находим поток <tex> f_0 </tex> для сети <tex> G_0 </tex> с урезанными пропускными способностями что при <tex> c_0(u, v) \Delta = a_n(u, v) 1 </tex>.Добавим следующий бит и находим следующее приближение для графа <tex> G_1 </tex> с новыми пропускными способностями <tex> c_1(u, v) = 2 a_n(u, v) + a_{n алгоритм вырождается в алгоритм [[Алоритм_Эдмондса- 1}(u, v) Карпа|Эдмондса- 2 f_0(uКарпа]], v) </tex>вследствие чего является корректным.
После <tex> n + 1 </tex> итерации получим ответ к задачеКоличество необходимых увеличений путей, так как <tex> c_основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью.{n}(u, v) |border="0" cellpadding="5" width=30% align= c(u, v) </tex>center|[[Файл:Flow_scale_1.png|550px|thumb|center|Выбор дополняющих путей в порядке длины]]|[[Файл:Flow_scale_2.png|550px|thumb|center|Выбор пути с высокой пропускной способностью в первую очередь]]|}
== Оценка времени работы ==
{{УтверждениеЛемма|about=1
|statement=
Время работы алгоритма — Максимальный поток в сети <tex> O(G </tex> ограничен сверху значением <tex> |f_k| + 2^k E</tex>, где <tex> |f_k| </tex> {{---}} значение потока при масштабе <tex> \Delta = 2^2 \log U) k </tex>.
|proof=
Докажем[[Файл:Flow_scale_3.png|530px|thumb|right|Разрез <tex> C_k </tex>]] В конце итерации с масштабом <tex> \Delta = 2^k </tex>, сеть <tex> G_{f_k} </tex> может быть разбита на два непересекающихся множества <tex> A_k </tex> и <tex> \overline{A_k} </tex> так, что время работы каждой итерации — остаточная пропускная способность каждого ребра, идущего из <tex> A_k </tex> в <tex> \overline{A_k} </tex>, не превосходит масштаба <tex> \Delta </tex>. То есть образуется [[Разрез,_лемма_о_потоке_через_разрез|разрез]] <tex> C_k = \langle A_k, \overline{A_k} \rangle </tex>. При этом, количество таких рёбер не превосходит <tex> E </tex>.Значит, значение остаточного потока не может превосходить <tex> O(\Delta E= 2^2) k E </tex>.}}
{{Лемма
|about=
2
|statement=
Время работы первой итерации алгоритма — Суммарное количество увеличивающих путей {{---}} <tex> O(E^2\log U) </tex>.
|proof=
На первом шаге ребра имеют некоторой итерации алгоритма каждый дополняющий путь имеет пропускную способность не меньше <tex> 1 2^k </tex>. Значит, Дополняющий поток на предыдущем шаге ограничен значением <tex> |f_0| \leq V 2^{k + 1} E </tex>. Поиск каждого дополнительного пути требует <tex> O(E) </tex> времениСледовательно, а их на каждой итерации количество дополняющих путей не больше превосходит <tex> V 2E </tex>. Итоговое время работы первой итерации — <tex> O(VE) \leq O(E^2) </tex>.}} {{ЛеммаУтверждение
|statement=
Время работы второй итерации алгоритма {{---}} <tex> O(E^2\log U) </tex>.
|proof=
[[Файл:Scaling.jpg|250px|thumb|right|Разрез В ходе выполнения алгоритма масштаб <tex> \langle A, \overline{A} \rangle Delta </tex>.]]Пусть вершина принимает следующие значения: <tex> s </tex> — [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|источник]] графа, вершина <tex> t </tex> — [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|сток]].[[Дополняющая_сеть,_дополняющий_путь|Дополняющая сеть]] <tex> G_S = \{0_2^{f_0}\lfloor \log_2 U \rfloor} </tex> — [[Отношение_связности,_компоненты_связности#.D0.A1.D0.BB.D1.83.D1.87.D0.B0.D0.B9_.D0.BE.D1.80.D0.B8.D0.B5.D0.BD.D1.82.D0.B8.D1.80.D0.BE.D0.B2.D0.B0.D0.BD.D0.BD.D0.BE.D0.B3.D0.BE_.D0.B3.D1.80.D0.B0.D1.84.D0.B0|несвязна]]. Обозначим за <tex> A </tex> компоненту связности графа, содержащую вершину <tex> s </tex>. Тогда <tex> t \notin A </tex>. Источник и сток лежат в разных компонентах связностиldots, значит <tex> c_{0_{f_0}}(A2^k, \overline{A}) = c_0(Aldots, 2, \overline{A}) - f_0(A1, 0\overline{A}) = 0 </tex>. Следовательно, в сети Тогда <tex> G_1 |S| = O(\log U) </tex> с пропускными способностями <tex> c_1 </tex>:<tex> \forall u \in A, v \in \overline{A{---}} \colon c_1(u, v) \leq 1 </tex>количество итераций алгоритма.
Рассмотрим максимальный поток <tex> f'_1 </tex> в сети <tex> G_1 </tex>.<tex> \langle A, \overlineКоличество итераций алгоритма {A} \rangle </tex> — [[Разрез,_лемма_о_потоке_через_разрез|разрез]], значит:<tex> |f'_1| = f'_1(A, \overline{A---}) \leq c(A, \overline{A}) \leq E, f_1 = f_0 + f'_1 </tex>.Пропускная способность каждого дополняющего пути не меньше <tex> 1 </tex>, а поиск каждого занимает <tex> O(E\log U) </tex> времени. Значит, итоговое время работы — значит, суммарное количество увеличивающих путей {{---}} <tex> O(E^2\log U) </tex>.}}
Оценка времени работы остальных итераций доказывается аналогично второму случаю. Количество итераций — Алгоритм [[Обход_в_ширину|обхода в ширину]] находит каждый дополняющий путь за время <tex> O(\log UE) </tex>. ЗначитСледовательно, общее суммарное время работы алгоритма {{---}} <tex> O(E^2 \log U) </tex>. }}
== Псевдокод ==
'''Max_Flow_By_Scalingfunction''' maxFlowByScaling(G: '''graph''',s: '''int''',t: '''int'''): '''int''' '''int''' flow = 0 <texfont color=darkgreen>f \leftarrow 0// поток в сети </texfont> '''int''' scale = <tex>\Delta \leftarrow 2^{\lfloor\log_2U\rfloor}</tex> <font color=darkgreen> // текущий минимальный размер потока, который пытаемся пустить </font> '''while''' scale <tex>\Delta \geq 1geqslant </tex>1 '''do while''' в <tex>G_f</tex> существует увеличивающий путь <tex>s-tp </tex> с пропускной способностью не меньшей <tex>\Delta</tex>меньше, чем scale '''doint''' minCapacity = <tex>P\leftarrow</tex> путь с пропускной способностью не меньшей <tex>\Delta</tex> <tex>\delta \leftarrow \min\{c_{ij}c(u, v) \colon(iu,jv)\in Pp\}</tex> <font color=darkgreen> // минимальная пропускная способность в увеличивающем пути </font> увеличить поток по рёбрам <tex>Pp </tex> на <tex>\delta</tex>minCapacity обновить <tex>G_f</tex> <tex>f \leftarrow f flow = flow + \delta</tex>minCapacity <tex>\Delta \leftarrow \Delta scale = scale / 2</tex> '''return''' <tex>f</tex>flow == См. также ==* [[Определение_сети,_потока|Определение сети, потока]]* [[Алоритм_Эдмондса-Карпа|Алоритм Эдмондса-Карпа]]* [[Алгоритм_Форда-Фалкерсона,_реализация_с_помощью_поиска_в_глубину|Алгоритм Форда-Фалкерсона]]
== Литература Источники информации ==
* [http://www.csd.uwo.ca/~yuri/Papers/iccv07_cap_scaling.pdf ''Olivier Juan, Yuri Boikov'': Capacity Scaling for Graph Cuts in Vision]
* [http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=maxFlowRevisited Algorithm Tutorials. Maximum Flow: Augmenting Path Algorithms Comparison]
* [http://wwwlogic.cs-seminarpdmi.spbras.ru/reportsics/34talks/21stream.pdf ''Андрей Станкевич'': Задача о максимальном потоке]* [https://youtu.be/sEwp5ZAJJps?t=18m9s ''Андрей Станкевич'': Лекториум, дополнительные главы алгоритмов, лекция 12]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Задача о максимальном потоке]]
1632
правки

Навигация