Изменения

Перейти к: навигация, поиск

Альтернатива Фредгольма — Шаудера

550 байт добавлено, 08:56, 24 июня 2015
Нет описания правки
[[Базис Шаудера |<<]][[Теория Гильберта-Шмидта|>>]]
 
__TOC__
Фредгольмом в начале XX века была разработана теория решения таких уравнений без использования методов функционального анализа. В 30-е годы XX века Шаудер обобщил ее на абстрактные компактные операторы.
Пусть <tex>X</tex> — <tex>B</tex>-пространство, <tex>A \colon X \to X</tex>, <tex> A </tex> — компактный. <tex>T = \lambda I - A</tex>
Ставим задачу: <tex>y</tex> дано, когда <tex>Tx=y</tex> разрешимо относительно <tex>x</tex>?
Пусть <tex>\overline V</tex> — единичный шар, <tex>Y = \operatorname{Ker}T</tex> — подпространство <tex>X</tex>.
Допустим, что <tex>\dim \operatorname{Ker}T = + \infty,~\overline W = \overline V \cap Y \Rightarrow implies \overline W = A \overline W</tex>. Так как <tex>A</tex> — компактный, <tex>\overline W</tex> — компакт в <tex>Y</tex>, но в бесконечномерном пространстве шар (<tex>\overline W</tex> будет шаром в подпространстве <tex>Y</tex>) не может быть компактом, получаем противоречие. Значит, если <tex>A</tex> — компактный, то <tex>\dim\operatorname{Ker}(I-A) < + \infty</tex>.
}}
Пусть <tex>T = I - A</tex>, <tex>A</tex> компактен, тогда <tex> R(T) </tex> замкнуто.
|proof=
[[Теорема Банаха об обратном операторе|Ранее]] мы доказали, что если уравнение <tex>Tx=y, y \in R(T)</tex> допускает априорную оценку (<tex>\exists \alpha~\forall exists x~Tx=y, \|x\| \leq a\|y\|</tex>), то <tex>R(T)</tex> замкнуто. Нужно доказать, что у <tex>T</tex> есть априорная оценка.
Пусть <tex>y \in R(T) \Rightarrow implies Tx=y</tex>. Тогда <tex>\forall z \in \operatorname{Ker}T \Rightarrow implies T(x+z) = T(x) + T(z) = y + 0 = y</tex>. Значит, все решения уравнения <tex>Tx=y</tex> записываются в форме <tex>x=x_0+z</tex>, где <tex>x_0</tex> — одно из решений, <tex>z</tex> принадлежит <tex>\operatorname{Ker} T</tex>. Но <tex>\dim\operatorname{Ker}T < + \infty \Rightarrow implies \operatorname{Ker}~T = \mathcal{L} \{ e_1, \ldots e_n \} \Rightarrow implies x = x_0 + \sum\limits_{k=1}^n \alpha_k e_k, \alpha_k \in \mathbb{R}</tex>.
Рассмотрим функцию от <tex>n</tex> переменных <tex>f(\alpha_1,\ldots,\alpha_n) = \|x_0 + \sum\limits_{k=1}^n \alpha_k e_k\| = \|x_0 - \sum\limits_{k=1}^n (-\alpha_k) e_k\|</tex>. Эта функция — не что иное, как наилучшее приближение <tex> x_0 </tex> элементами конечномерного <tex> \operatorname{Ker} T </tex>, теорема о наилучшем приближении гарантирует нам, что существуют <tex> \alpha^*_1, \alpha^*_2, \ldots, \alpha^*_n : f (\overline {\alpha}^*) = \inf\limits_{\alpha} f(\alpha)</tex>.
Заметим, что <tex> z = T(x_{n+p}) + Ax_n </tex>.
<tex> T^{mn+p-1}(z) = T^{mn+p}(x_{mn+p}) + T^{mn+p-1}(Ax_n) </tex>.
Здесь первое слагаемое равно нулю по определению последовательности <tex> x_n </tex>. Второе же, так как операторы <tex> T^{mn+p-1} </tex> и <tex> A </tex> коммутируют, равно <tex> A(T^{mn+p-1}(x_n)) = A(0) = 0 </tex>, и <tex> z \in \operatorname{Ker}(T^{mn+p-1}) </tex>.
Но раз <tex> z \in M_{n+p-1} </tex>, то <tex> \|x_{n+p} - z\| \ge \frac12 </tex>, и <tex> \|y_{n+p} - y_{n}\| \ge \frac12 </tex>, чего не может быть, поскольку в этом случае мы не сможем выделить из <tex> y_n </tex> сходящуюся подпоследовательность. Поэтому наше предположение неверно, теорема доказана.
|statement=
Пусть <tex> A </tex> — компактный оператор на банаховом <tex> X </tex>, <tex> T = I - A </tex>.
Тогда <tex> R(T) = X \Leftrightarrow iff \operatorname{Ker} T = \{0\} </tex>.
|proof=
<tex> \Longrightarrow implies </tex>:
Пусть существует <tex> x_1 \ne 0, x_1 \in \operatorname{Ker} T = N_1 </tex>.
<tex> R(T) </tex> — замкнутое множество, <tex> T^* = I - A^* </tex>, <tex> R(T^*) = (\operatorname{Ker} T)^{\perp} = (\{0\})^{\perp} = X^* </tex>.
Тогда , применив первый пункт к <tex>T^*</tex>, получим <tex> \operatorname{Ker} T^* = \{0\} </tex>, и <tex> R(T) = (\operatorname{Ker} T^*)^{\perp} = X </tex>.
}}
# <tex>\operatorname{Ker} T \ne \{0\}</tex>, тогда <tex> y = Tx</tex> разрешимо только для тех <tex>y</tex>, которые принадлежат <tex>(\operatorname{Ker} T^*)^\perp</tex>
|proof=
# <tex> \operatorname{Ker} T = \{0\} </tex>, то есть <tex> R(T) = X </tex>, значит, он осуществляет биекцию, и так как ограничен, по [[Теорема Банаха об обратном операторе#banachhom|теореме Банаха о гомеоморфизме]], непрерывно обратим, тогда <tex> y = Tx </tex> действительно разрешимо для всех <tex> y </tex>
# <tex> \operatorname{Ker} T \ne \{0\} </tex>, по первой теореме этого параграфа, <tex> R(T) = \operatorname{Cl} R(T) </tex>. По [[Сопряженный оператор#Теоремы о множестве значений оператора|общим теоремам о сопряженном операторе]], <tex> \operatorname{Cl} R(T) = (\operatorname{Ker} T^*)^\perp </tex>. Рассмотрим <tex> y = Tx </tex>, очевидно, оно разрешимо, когда <tex> y \in R(T) </tex>, то есть, <tex> y \in (\operatorname{Ker} T^*)^\perp </tex>.
}}
<tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n \in L_{n+p-1}</tex>. <tex>L_{n+p-1} = \mathcal{L} \{x_1,\ldots,x_{n+p-1}\}</tex>. <tex>y_{n+p} \in L_{n+p}</tex>, <tex>y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k x_k + \alpha_{n+p} x_{n+p}</tex>. Подействуем A: <tex>A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k A x_k + \alpha_{n+p} A x_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k \lambda_k x_k + \alpha_{n+p} \lambda_{n+p} x_{n+p} </tex>. Разность <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \beta_k x_k \in L_{n+p-1}</tex>. <tex>y_n = \sum\limits_{k=1}^n \gamma_k x_k, A y_n = \sum\limits_{k=1}^n \gamma_k \lambda_k x_k \in L_{n+p-1}</tex> и, следовательно, <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n</tex> принадлежит <tex>L_{n+p-1}</tex>.
Таким образом, То что было в скобке обозначим за <tex>\lambda_t</tex>. Тогда <tex>z_{n+p} -z_n = A y_{n+p} - A y_n = \lambda_{n+p} z y_{n+p} - t = \lambda_{n+p} (y_{n+p} - z\frac{t}{\lambda_{n+p}})</tex>. Получаем: <tex>\|z_{n+p} - z_n\| = |\lambda_{n+p}| \|y_{n+p} - z\frac{t}{\lambda_{n+p}}\|</tex>, где первый множитель не меньше <tex>\alpha</tex>, а второй — <tex>\frac 1 2</tex> (по построению <tex>y_n</tex>) , в итоге <tex>\|z_{n+p} - z_n\| \geq \frac{\alpha}{2}</tex> и, значит, из <tex>\{z_n\}</tex> не выделить сходящейся подпоследовательности. Получили противоречие, а значит, на каждом отрезке <tex>[\alpha, \|A\|]</tex> действительно конечное число собственных чисел, и спектр счетен.
Осталось проверить, что только <tex>0</tex> может быть предельной точкой. Пусть это не так, и какое-то <tex>\lambda \ne 0</tex> — предельная точка, это означает, что для любого <tex>\forall \varepsilon: 0 < \varepsilon < \frac{\lambda}{2}</tex>, во множестве <tex>[\lambda - \varepsilon, \lambda) \cup (\lambda, \lambda + \varepsilon]</tex> содержится собственное число, то есть в отрезке <tex>[\frac{\lambda}{2}, \|A\|]</tex> содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше.
Анонимный участник

Навигация