Редактирование: Анализ временных рядов

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 134: Строка 134:
 
В предыдущих моделях считалось, что слагаемое ошибки в стохастическом процессе генерации временного ряда имело одинаковую дисперсию.
 
В предыдущих моделях считалось, что слагаемое ошибки в стохастическом процессе генерации временного ряда имело одинаковую дисперсию.
  
В GARСH-модели (англ. Generalized AutoRegressive Conditional Heteroscedasticity, GARCH) предполагается, что слагаемое ошибки следует авторегрессионному скользящему среднему (англ. AutoRegressive Moving Average, ARMA), соответственно слагаемое меняется по ходу времени. Это особенно полезно при моделировании финансовых временных рядов, так как диапазон изменений тоже постоянно меняется (рис. 13).
+
В GARСH-модели (англ. Generalized AutoRegressive Conditional Heteroscedasticity, GARCH) предполагается, что слагаемое ошибки следуют авторегрессионному скользящему среднему (англ. AutoRegressive Moving Average, ARMA), соответственно слагаемое меняется по ходу времени. Это особенно полезно при моделировании финансовых временных рядов, так как диапазон изменений тоже постоянно меняется (рис. 13).
  
В 1982 году была предложена ARCH {{---}} модель, описываемая формулой: <br>
+
В 1982 году была предложена ARCH - модель, описываемая формулой: <br>
  
 
$\sigma^2(t) = \alpha + \sum_{i = 1}^{\alpha}b_ir^{2}_{t-1}$ <br>
 
$\sigma^2(t) = \alpha + \sum_{i = 1}^{\alpha}b_ir^{2}_{t-1}$ <br>
где $\alpha$ {{---}} коэффициент задержки<br>
+
где $\alpha$ {{---}} коэффициент задержки. ARCH модель моделирует волатильность в виде суммы базовой волатильности и линейной функции абсолютных значений нескольких последних изменений значений.
$\sigma^2(t)$ - волатильность<br>
 
$\sum_{i = 1}^{\alpha}b_ir^{2}_{t-1}$ - линенйная комбинация абсолютных значений нескольких последних изменений значений.
 
  
 
Позднее была создана GARCH {{---}} обобщённая ARCH модель, которая также учитывает предыдущие оценки дисперсии. Формула может быть записана так:
 
Позднее была создана GARCH {{---}} обобщённая ARCH модель, которая также учитывает предыдущие оценки дисперсии. Формула может быть записана так:
Строка 195: Строка 193:
 
Модель можно описать уравнением
 
Модель можно описать уравнением
 
$y_t = f(y_{t-1}) + \epsilon_t$ <br>
 
$y_t = f(y_{t-1}) + \epsilon_t$ <br>
где $y_{t-1} = (y_{t-1}, y_{t-2}, ...)'$ {{---}} вектор, содержащий запаздывающие значения, <br>
+
где $y_{t-1} = (y_{t-1}, y_{t-2}, ...)'$ - вектор, содержащий запаздывающие значения, <br>
f {{---}} нейронная сеть, с 4 скрытыми узлами в каждом слое, <br>
+
f - нейронная сеть, с 4 скрытыми узлами в каждом слое, <br>
$\epsilon_t$ {{---}} считаем, что ряд ошибок [https://ru.wikipedia.org/wiki/Гомоскедастичность гомокседастичен] (и возможно имеет нормальное распределение).<br>
+
$\epsilon_t$ - считаем, что ряд ошибок гомокседастичен( и возможно имеет нормальное распределение)<br>
 
[[Файл:NNETARElectriacalequipmntManufacturingDecomposition.png |right|300px|thumb|[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb Рисунок 18.] NNETAR c декомпозицией]]
 
[[Файл:NNETARElectriacalequipmntManufacturingDecomposition.png |right|300px|thumb|[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb Рисунок 18.] NNETAR c декомпозицией]]
  
 
Мы можем моделировать будущие выборочные пути этой модели итеративно, случайным образом генерируя значение для $\epsilon_t$ либо из нормального распределения, либо путем повторной выборки из исторических значений.<br> Так что если
 
Мы можем моделировать будущие выборочные пути этой модели итеративно, случайным образом генерируя значение для $\epsilon_t$ либо из нормального распределения, либо путем повторной выборки из исторических значений.<br> Так что если
$\epsilon^*_{T+1}$
+
$\epsilon_{T+1}*$
{{---}} случайная выборка из распределения ошибок в момент времени $T+1$,<br> тогда $y^*_{T+1} = f(y_T) + \epsilon^*_{T+1}$ {{---}} один из возможных вариантов распределения прогнозов для $y_{T+1}$ <br>
+
{{---}} случайная выборка из распределения ошибок в момент времени $T+1$,<br> тогда $y_{T+1}* = f(y_T) + \epsilon_{T+1}*$ {{---}} один из возможных вариантов распределения прогнозов для $y_{T+1}$ <br>
Установив $y^*_{T+1} = (y^*_{T+1}, y_{T})'$, мы можем повторить процесс, чтобы получить $y^*_{T+2} = f(y_{T+1}) + \epsilon_{T+2}$. <br>
+
Установив $y_{T+1}* = (y_{T+1}*, y_{T})'$, мы можем повторить процесс, чтобы получить $y_{T+2}* = f(y_{T+1}) + \epsilon_{T+2}$. <br>
  
 
Таким образом, мы можем итеративно моделировать будущий путь выборки. Повторно моделируя выборочные пути, мы накапливаем знания о распределении всех будущих значений на основе подобранной нейронной сети.
 
Таким образом, мы можем итеративно моделировать будущий путь выборки. Повторно моделируя выборочные пути, мы накапливаем знания о распределении всех будущих значений на основе подобранной нейронной сети.
Строка 216: Строка 214:
 
[[Файл:Evaluation.png |right|600px|thumb|[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb Рисунок 19.] MAE с перекрестной проверкой для каждой модели]]
 
[[Файл:Evaluation.png |right|600px|thumb|[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb Рисунок 19.] MAE с перекрестной проверкой для каждой модели]]
 
Выполнен выбор модели с помощью процедуры перекрестной проверки, описанной ранее. Не рассчитывая его для динамических линейных моделей и моделей LSTM из-за их высокой вычислительной стоимости и низкой производительности.<br>
 
Выполнен выбор модели с помощью процедуры перекрестной проверки, описанной ранее. Не рассчитывая его для динамических линейных моделей и моделей LSTM из-за их высокой вычислительной стоимости и низкой производительности.<br>
На следующем рисунке показана [[Оценка качества в задачах классификации и регрессии|средняя абсолютная ошибка]] (англ. Mean Absolute Error, MAE) с перекрестной проверкой для каждой модели и для каждого временного горизонта (рис. 17):  
+
На следующем рисунке показана [[Оценка качества в задачах классификации и регрессии|sсредняя абсолютная ошибка]] (англ. Mean Absolute Error, MAE) с перекрестной проверкой для каждой модели и для каждого временного горизонта (рис. 17):  
  
 
Модель NNETAR по сезонно скорректированным данным была лучшей моделью для данной задачи, поскольку она соответствовала самому низкому значению MAE, прошедшему перекрестную проверку.<br>
 
Модель NNETAR по сезонно скорректированным данным была лучшей моделью для данной задачи, поскольку она соответствовала самому низкому значению MAE, прошедшему перекрестную проверку.<br>
Строка 247: Строка 245:
  
 
==Источники Информации==
 
==Источники Информации==
*[http://www.machinelearning.ru/wiki/index.php?title=Временной_ряд machinelearning.ru]
+
* Филатов, А. В. Заметки профайлера / А. В. Филатов. -Москва: Издательские решения, 2019. -522.
 +
* [http://www.machinelearning.ru/wiki/index.php?title=Временной_ряд machinelearning.ru]
 
*[https://ru.wikipedia.org/wiki/Временной_ряд Википедия: Временной ряд]
 
*[https://ru.wikipedia.org/wiki/Временной_ряд Википедия: Временной ряд]
 
*[http://statsoft.ru/home/textbook/modules/sttimser.html StatSoft: Анализ временных рядов]
 
*[http://statsoft.ru/home/textbook/modules/sttimser.html StatSoft: Анализ временных рядов]
 
*[https://chaos.phys.msu.ru/loskutov/PDF/Lectures_time_series_analysis.pdf Лоскутов А.Ю. физ. фак. МГУ: Анализ Временных Рядов]
 
*[https://chaos.phys.msu.ru/loskutov/PDF/Lectures_time_series_analysis.pdf Лоскутов А.Ю. физ. фак. МГУ: Анализ Временных Рядов]
*[https://wiki.loginom.ru/articles/garch-model.html loginom: Garch-модель]
 
*[https://otexts.com/fpp2/nnetar.html Otexts: NNETAR]
 
 
[[Категория: Машинное обучение]]
 
[[Категория: Машинное обучение]]
 
[[Категория: Анализ временных рядов]]
 
[[Категория: Анализ временных рядов]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: