Редактирование: Анализ временных рядов

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 139: Строка 139:
  
 
$\sigma^2(t) = \alpha + \sum_{i = 1}^{\alpha}b_ir^{2}_{t-1}$ <br>
 
$\sigma^2(t) = \alpha + \sum_{i = 1}^{\alpha}b_ir^{2}_{t-1}$ <br>
где $\alpha$ {{---}} коэффициент задержки<br>
+
где $\alpha$ {{---}} коэффициент задержки. ARCH модель моделирует волатильность в виде суммы базовой волатильности и линейной функции абсолютных значений нескольких последних изменений значений.
$\sigma^2(t)$ - волатильность<br>
 
$\sum_{i = 1}^{\alpha}b_ir^{2}_{t-1}$ - линенйная комбинация абсолютных значений нескольких последних изменений значений.
 
  
 
Позднее была создана GARCH {{---}} обобщённая ARCH модель, которая также учитывает предыдущие оценки дисперсии. Формула может быть записана так:
 
Позднее была создана GARCH {{---}} обобщённая ARCH модель, которая также учитывает предыдущие оценки дисперсии. Формула может быть записана так:
Строка 201: Строка 199:
  
 
Мы можем моделировать будущие выборочные пути этой модели итеративно, случайным образом генерируя значение для $\epsilon_t$ либо из нормального распределения, либо путем повторной выборки из исторических значений.<br> Так что если
 
Мы можем моделировать будущие выборочные пути этой модели итеративно, случайным образом генерируя значение для $\epsilon_t$ либо из нормального распределения, либо путем повторной выборки из исторических значений.<br> Так что если
$\epsilon^*_{T+1}$
+
$\epsilon_{T+1}*$
{{---}} случайная выборка из распределения ошибок в момент времени $T+1$,<br> тогда $y^*_{T+1} = f(y_T) + \epsilon^*_{T+1}$ {{---}} один из возможных вариантов распределения прогнозов для $y_{T+1}$ <br>
+
{{---}} случайная выборка из распределения ошибок в момент времени $T+1$,<br> тогда $y_{T+1}* = f(y_T) + \epsilon_{T+1}*$ {{---}} один из возможных вариантов распределения прогнозов для $y_{T+1}$ <br>
Установив $y^*_{T+1} = (y^*_{T+1}, y_{T})'$, мы можем повторить процесс, чтобы получить $y^*_{T+2} = f(y_{T+1}) + \epsilon_{T+2}$. <br>
+
Установив $y_{T+1}* = (y_{T+1}*, y_{T})'$, мы можем повторить процесс, чтобы получить $y_{T+2}* = f(y_{T+1}) + \epsilon_{T+2}$. <br>
  
 
Таким образом, мы можем итеративно моделировать будущий путь выборки. Повторно моделируя выборочные пути, мы накапливаем знания о распределении всех будущих значений на основе подобранной нейронной сети.
 
Таким образом, мы можем итеративно моделировать будущий путь выборки. Повторно моделируя выборочные пути, мы накапливаем знания о распределении всех будущих значений на основе подобранной нейронной сети.
Строка 251: Строка 249:
 
*[http://statsoft.ru/home/textbook/modules/sttimser.html StatSoft: Анализ временных рядов]
 
*[http://statsoft.ru/home/textbook/modules/sttimser.html StatSoft: Анализ временных рядов]
 
*[https://chaos.phys.msu.ru/loskutov/PDF/Lectures_time_series_analysis.pdf Лоскутов А.Ю. физ. фак. МГУ: Анализ Временных Рядов]
 
*[https://chaos.phys.msu.ru/loskutov/PDF/Lectures_time_series_analysis.pdf Лоскутов А.Ю. физ. фак. МГУ: Анализ Временных Рядов]
*[https://wiki.loginom.ru/articles/garch-model.html loginom: Garch-модель]
 
*[https://otexts.com/fpp2/nnetar.html Otexts: NNETAR]
 
 
[[Категория: Машинное обучение]]
 
[[Категория: Машинное обучение]]
 
[[Категория: Анализ временных рядов]]
 
[[Категория: Анализ временных рядов]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: