Изменения

Перейти к: навигация, поиск

Анализ временных рядов

41 байт добавлено, 18:59, 20 января 2021
Garch
В GARСH-модели (англ. Generalized AutoRegressive Conditional Heteroscedasticity, GARCH) предполагается, что слагаемое ошибки следует авторегрессионному скользящему среднему (англ. AutoRegressive Moving Average, ARMA), соответственно слагаемое меняется по ходу времени. Это особенно полезно при моделировании финансовых временных рядов, так как диапазон изменений тоже постоянно меняется (рис. 13).
В 1982 году была предложена ARCH {{- --}} модель, описываемая формулой: <br>
$\sigma^2(t) = \alpha + \sum_{i = 1}^{\alpha}b_ir^{2}_{t-1}$ <br>
где $\alpha$ {{---}} коэффициент задержки. ARCH модель моделирует <br>$\sigma^2(t)$ - волатильность в виде суммы базовой волатильности и линейной функции <br>$\sum_{i = 1}^{\alpha}b_ir^{2}_{t-1}$ - линенйная комбинация абсолютных значений нескольких последних изменений значений.
Позднее была создана GARCH {{---}} обобщённая ARCH модель, которая также учитывает предыдущие оценки дисперсии. Формула может быть записана так:
Модель можно описать уравнением
$y_t = f(y_{t-1}) + \epsilon_t$ <br>
где $y_{t-1} = (y_{t-1}, y_{t-2}, ...)'$ {{- --}} вектор, содержащий запаздывающие значения, <br>f {{--- }} нейронная сеть, с 4 скрытыми узлами в каждом слое, <br>$\epsilon_t$ {{--- }} считаем, что ряд ошибок [https://ru.wikipedia.org/wiki/Гомоскедастичность гомокседастичен] ( и возможно имеет нормальное распределение).<br>
[[Файл:NNETARElectriacalequipmntManufacturingDecomposition.png |right|300px|thumb|[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb Рисунок 18.] NNETAR c декомпозицией]]
Мы можем моделировать будущие выборочные пути этой модели итеративно, случайным образом генерируя значение для $\epsilon_t$ либо из нормального распределения, либо путем повторной выборки из исторических значений.<br> Так что если
$\epsilon_epsilon^*_{T+1}*${{---}} случайная выборка из распределения ошибок в момент времени $T+1$,<br> тогда $y_y^*_{T+1}* = f(y_T) + \epsilon_epsilon^*_{T+1}*$ {{---}} один из возможных вариантов распределения прогнозов для $y_{T+1}$ <br>Установив $y_y^*_{T+1}* = (y_y^*_{T+1}*, y_{T})'$, мы можем повторить процесс, чтобы получить $y_y^*_{T+2}* = f(y_{T+1}) + \epsilon_{T+2}$. <br>
Таким образом, мы можем итеративно моделировать будущий путь выборки. Повторно моделируя выборочные пути, мы накапливаем знания о распределении всех будущих значений на основе подобранной нейронной сети.
[[Файл:Evaluation.png |right|600px|thumb|[https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb Рисунок 19.] MAE с перекрестной проверкой для каждой модели]]
Выполнен выбор модели с помощью процедуры перекрестной проверки, описанной ранее. Не рассчитывая его для динамических линейных моделей и моделей LSTM из-за их высокой вычислительной стоимости и низкой производительности.<br>
На следующем рисунке показана [[Оценка качества в задачах классификации и регрессии|sсредняя средняя абсолютная ошибка]] (англ. Mean Absolute Error, MAE) с перекрестной проверкой для каждой модели и для каждого временного горизонта (рис. 17):
Модель NNETAR по сезонно скорректированным данным была лучшей моделью для данной задачи, поскольку она соответствовала самому низкому значению MAE, прошедшему перекрестную проверку.<br>
==Источники Информации==
* Филатов, А. В. Заметки профайлера / А. В. Филатов. -Москва: Издательские решения, 2019. -522.* [http://www.machinelearning.ru/wiki/index.php?title=Временной_ряд machinelearning.ru]
*[https://ru.wikipedia.org/wiki/Временной_ряд Википедия: Временной ряд]
*[http://statsoft.ru/home/textbook/modules/sttimser.html StatSoft: Анализ временных рядов]
*[https://chaos.phys.msu.ru/loskutov/PDF/Lectures_time_series_analysis.pdf Лоскутов А.Ю. физ. фак. МГУ: Анализ Временных Рядов]
*[https://wiki.loginom.ru/articles/garch-model.html loginom: Garch-модель]
*[https://otexts.com/fpp2/nnetar.html Otexts: NNETAR]
[[Категория: Машинное обучение]]
[[Категория: Анализ временных рядов]]
53
правки

Навигация