Анализ реализации с ранговой эвристикой

Материал из Викиконспекты
Перейти к: навигация, поиск

Пусть [math] union(v_1,v_2) [/math] — процедура объединения двух множеств, содержащих [math] v_1 [/math] и [math] v_2 [/math], а [math] get(v) [/math] — поиск представителя множества, содержащего [math] v [/math]. Рассмотрим [math] n [/math] операций [math] union [/math] и [math] m [/math] операций [math] get [/math] ([math] m \gt n [/math]). Не теряя общности, будем считать, что [math] union [/math] принимает в качестве аргументов представителей, то есть [math] union(v_1,v_2) [/math] заменяем на [math] union(get(v_1),get(v_2)) [/math].

Оценим стоимость операции [math] get(v) [/math]. Обозначим [math] R(v) [/math] — ранг вершины, [math]P(v)[/math] — представитель множества, содержащего [math] v [/math], [math] L(v) [/math] — отец вершины, [math] K(v) [/math] — количество вершин в поддереве, корнем которого является [math] v [/math].

Утверждение:
[math] R(P(v)) \gt R(v) [/math]
[math]\triangleright[/math]

Из принципа работы функции [math] get [/math] следует:

  1. [math] R(L(v))\gt R(v) [/math]
  2. Между [math] v [/math] и [math] P(v) [/math] существует путь вида: [math] v \rightarrow L(v) \rightarrow L(L(v)) \rightarrow \dots \rightarrow P(v) [/math]
Записав неравенство из первого пункта вдоль пути из второго пункта получаем требуемое.
[math]\triangleleft[/math]
Утверждение:
[math] R(v) = i \Rightarrow K(v) \ge 2^i [/math]
[math]\triangleright[/math]

Докажем по индукции:

Для 0 равенство очевидно. Ранг вершины станет равным [math] i [/math] при объединении поддеревьев ранга [math]i-1[/math], следовательно:

[math]K(v) \ge K(v_1) + K(v_2) \ge 2^{i-1}+2^{i-1} \ge 2^i [/math].
[math]\triangleleft[/math]

Из последнего утверждения следует:

  1. [math] R(v) \le \log_2(n) [/math]
  2. Количество вершин ранга [math] i \le {n \over 2^i} [/math]
Теорема:
Амортизационная стоимость [math] get = O(\log^{*}(n)) [/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим некоторое число [math] x [/math]. Разобьем наши ребра на три класса:

  1. Ведут в корень или в сына корня.
  2. [math] R(P(v)) \ge x^{R(v)}[/math]
  3. Все остальные.

Обозначим эти классы [math] T_1, T_2, T_3 [/math].

Амортизационная стоимость

[math] S = {\sum_{get} \limits} ({\sum_{v:v \in get,v \in T_1} \limits 1} + {\sum_{v:v \in get,v \in T2} \limits 1} + {\sum_{v: \in get,v \in T_3} \limits 1} ) / m [/math]

где [math] {v \in get } [/math] означает, что ребро, начало которого находится в [math] v [/math], было пройдено во время выполнения текущего [math] get [/math]. Ребро [math] v [/math] эквивалентно вершине, в которой оно начинается.

В силу того, что [math]{\sum_{v:v \in get,v \in T_1} \limits 1} = O(1) [/math] получаем:

[math] S = O(1) + {\sum_{get} \limits} ~ {\sum_{v:v \in get,v \in T_2} \limits} 1/m+ {\sum_{get} \limits} ~ {\sum_{v:v \in get,v \in T_3} \limits} 1 / m [/math]

Во время [math] get [/math] после прохождения K ребер из второго класса [math] R(v_1) \ge x^{x^{.^{.^{.^{x^{R(v)}}}}}} [/math]

Из выше сказанного и первого следствия второго утверждения получаем, что:

[math] {\sum_{v:v \in get,v \in T_2} \limits} \le \log^*_x(\log_2(n)) = O(\log^*(n)) [/math]

Для того, чтобы [math] \log^*_x [/math] существовал необходимо, чтобы [math] x \gt e ^{ 1 /e } \approx 1,44 [/math]


Рассмотрим сумму

[math] {\sum_{get} \limits} ~ {\sum_{v:v \in get,v \in T_3} \limits} 1~/m \lt {\sum_{get} \limits} ~ {\sum_{v:v \in get,v \in T_3} \limits} 1/n [/math]

Из первого утверждения и в силу использования сжатия путей следует, что [math] R(P(x))[/math] cтрого увеличивается при переходе по ребру из [math]Т_3[/math].

Как максимум через [math] x^{R(k)} [/math] переходов ребро перестанет появляться в классе [math]Т_3[/math].

[math] {\sum_{get} \limits}~ {\sum_{v:v \in get,v \in T_3} \limits} 1/n = {\sum_v \limits ~\sum_{get: in ~ this ~ get ~ v \in T_3} \limits } 1/n \le \sum_v \limits x^{R(v)} /n [/math]

Из второго следствия второго утверждения следует

[math] {\sum_{get} \limits}~ {\sum_{v:v \in get,v \in T_3} \limits} 1/n \le \sum_{Rank=0}^{log_{2}(n)} \limits {nx^{Rank} \over 2^{Rank} n} [/math]

При [math] x \lt 2~[/math]:

[math] {\sum_{get} \limits}~ {\sum_{v:v \in get,v \in T3} \limits} 1/n \le \sum_{Rank=0}^{log_{2}(n)} \limits {x^{Rank} \over 2^{Rank}} \le \sum_{Rank=0}^\infty \limits {x^{Rank} \over 2^{Rank}} \le { 2 \over 2-x } = O(1) [/math]
.


Итак [math] S = O(1) + O(\log^*(x)) + O(1) = O(\log^*(x)) [/math].

В силу того, что интервал [math] (1,45...2) [/math] не пустой, теорема доказана.
[math]\triangleleft[/math]

Ссылки