Изменения

Перейти к: навигация, поиск
Нет описания правки
==Простейшие операции==
Рассмотрим два [[Производящая функция|формальных степенных ряда]] <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex>.
{{Определение|definition = '''Суммой'' ' (англ. ''addition'') формальных степенных рядов <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1) s + (a_2 + b_2) s^2 + \dots</tex>.}}{{Определение|definition = '''Произведением'' ' (англ. ''multiplication'') формальных степенных рядов <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s)B(s) = a_0 b_0 + (a_0 b_1 + a_1 b_0) s + (a_0 b_2 + a_1 b_1 + a_2 b_0) s^2 + \dots</tex>.}}
Операции сложения и умножения формальных степенных рядов коммутативны и ассоциативны.
Пусть <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex> {{---}} два формальных степенных ряда, причем <tex>B(0) = b_0 = 0</tex>.
{{Определение|definition = '''Композицией (подстановкой)'' ' (англ. ''composition'') формальных степенных рядов <tex>A</tex> и <tex>B</tex> называется формальный степенной ряд <tex>A(B(t)) = a_0 + a_1 b_1 t + (a_1 b_2 + a_2 b_1^2) t^2 + (a_1 b_3 + 2 a_2 b_1 b_2 + a_3 b_1^3) t^3 + \dots</tex>.}}
Если, например, <tex>B(t) = -t</tex>, то <tex>A(B(t)) = A(-t) = a_0 -a_1 t + a_2 t^2 - a_3 t^3 + \dots</tex>.
|about = об обратном формальном степенном ряде
|statement = Пусть ряд <tex>B(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + \dots</tex> таков, что <tex>B(0) = b_0 = 0</tex>, а <tex>b_1 \ne 0</tex>. Тогда существуют такие ряды <tex> A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots</tex>, <tex>A(0) = 0</tex> и <tex>C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots</tex>, <tex>C(0) = 0</tex>, что <tex>A(B(t)) = t</tex> и <tex>B(C(u)) = u</tex>. При этом, ряды <tex>A</tex> и <tex>C</tex> единственны.
{{Определение|definition=Производящие функции, соответствующие рядам <tex>A</tex> и <tex>C</tex>, называются соответственно '''левой''' и '''правой обратной''' (англ. ''left (right) inverse'') к производящей функции, соответствующей ряду <tex>B</tex>.}}
|proof =
:Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично.
:Будем определять коэффициенты ряда <tex>A</tex> последовательно. Коэффициент <tex>a_1</tex> определяется из условия <tex>a_1 b_1 = 1</tex>, откуда <tex>a_1 = \dfrac{1}{b_1}</tex>.
:Предположим теперь, что коэффициенты <tex>a_1, a_2, \dots, a_n</tex> уже определены. Коэффициент <tex>a_{n+1}</tex> определяется из условия <tex>a_{n+1} b_1^{n+1} + \dots = 0</tex>, где точками обозначен неокторый некоторый многочлен от <tex>a_1, \dots, a_n</tex> и <tex>b_1, \dots, b_n</tex>. Тем самым, условие представляет собой линейное уравнение на <tex>a_{n+1}</tex>, причем коэффициент <tex>b_1^{n+1}</tex> при <tex>a_{n+1}</tex> отличен от нуля. Такое уравнение имеет единственное решение, и теорема доказана.
}}
Анонимный участник

Навигация