Редактирование: Арифметические действия с числовыми рядами

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 108: Строка 108:
 
|proof=
 
|proof=
 
Так как общее слагаемое ряда стремится к нулю, то достаточно показать, что сходится ряд с расставленными скобками:
 
Так как общее слагаемое ряда стремится к нулю, то достаточно показать, что сходится ряд с расставленными скобками:
:<tex>\sum\limits_{k = 0}^{\infty} \left ( \frac 1{2k+1} - \frac 1{4k+2} - \frac 1{4k + 4} \right )</tex>
+
:<tex>\sum\limits_{k = 0}^{\infty} \left ( \frac 1{2k+1} - \frac 1{2k+2} - \frac 1{4k + 4} \right )</tex>
  
 
Рассмотрим частичную сумму ряда с расставленными скобками:
 
Рассмотрим частичную сумму ряда с расставленными скобками:
:<tex>\sum\limits_{k = 0}^{n} \left ( \frac 1{2k+1} - \frac 1{4k+2} - \frac 1{4k + 4} \right ) = \left ( 1 + \frac 13 + \dots + \frac 1{2n+1} \right ) - \left ( \frac 12 + \frac 14 + \dots + \frac 1{4n+4} \right ) =</tex>
+
:<tex>\sum\limits_{k = 0}^{n} \left ( \frac 1{2k+1} - \frac 1{2k+2} - \frac 1{4k + 4} \right ) = \left ( 1 + \frac 13 + \dots + \frac 1{2n+1} \right ) - \left ( \frac 12 + \frac 14 + \dots + \frac 1{4n+4} \right ) =</tex>
 
:<tex>= H_{2n} - \frac 12 H_n - \frac 12 H_{2n+2} = \frac 12 \left ( H_{2n} - H_n - \frac 1{2n+1} - \frac 1{2n+2} \right ) \rightarrow \frac{\ln 2}2</tex>
 
:<tex>= H_{2n} - \frac 12 H_n - \frac 12 H_{2n+2} = \frac 12 \left ( H_{2n} - H_n - \frac 1{2n+1} - \frac 1{2n+2} \right ) \rightarrow \frac{\ln 2}2</tex>
 
}}
 
}}

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: