Изменения

Перейти к: навигация, поиск
м
Нет описания правки
|id=lemma1.
|statement=
Пусть последовательность <tex>a_0,a_1,...</tex> положительных чисел такова, что <tex>\frac{a_{n+1}}{a_n}=A\frac{n^k+\alpha_1 n^{k-1}+...+\alpha_k}{n^k+\beta_1 n^{k-1}+...+\beta_k}(4.1)</tex> для всех достаточно больших <tex>n</tex>, причем <tex>\alpha_1 \ne \beta_1</tex>. Тогда <tex>a_n</tex> растет как <tex>a_n \sim cA^n n^{\alpha_1-\beta_1}(4.2)</tex> для некоторой постоянной <tex>c>0</tex>.
|proof=
Утверждение леммы эквивалентно тому, что существует предел <tex>\lim {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim_{n \to \infty} \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n</tex>.
Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. Фундаментальность последовательности означает, что для любого <tex>\epsilon>0</tex> существует такой номер <tex>N</tex>, что для всех <tex>n > N </tex> и всех положительных <tex>m</tex>
<tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>,
<tex>\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})</tex>.
Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции <tex>f</tex>, определенной формулой (4.8), в ряд в точке <tex>0</tex>:
<tex>f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции <tex>f </tex> имеем <tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...</tex>. Поэтому для некоторой постоянной <tex>C </tex> при достаточно маленьком <tex>x </tex> имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если N достаточно велико, то <tex>&forall; n>N</tex>
<tex>|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|<C \frac{1}{n^2}</tex>,
<tex>\le C(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \cdots + \frac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n |</tex>.
Поскольку ряд <tex>\sum_{k=1}^{\infty} \frac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших <tex>n </tex> можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\frac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>,
[[Файл:InkedOiGdtVITsP10_LI.jpg|300px|center]]
}}
'''Замечание:''' Предположения леммы не позволяют определить величину константы c. Действительно, умножив последовательность an <tex>a_n</tex> на произвольную постоянную <tex>d > 0</tex>, мы получим новую последовательность с тем же отношением последовательных членов, константа <tex>c </tex> для которой увеличивается в <tex>d </tex> раз
== Примеры ==
<tex>\frac{c_{n+1}}{c_n}=\frac{4n+2}{n+2}=4\frac{n+\frac{1}{2}}{n+2}</tex>
Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\frac{3}{2}}</tex> для некоторой постоянной <tex>c</tex>.
'''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам
<tex>(a-s)^{\alpha}=a^{\alpha}(1-\frac{s}{a})^{\alpha}=a^{\alpha}(1 - \frac{\alpha}{1!} \frac{s}{a} + \frac{\alpha(\alpha-1)}{2!}{(\frac{s}{a})^2} - \frac{\alpha(\alpha-1)(\alpha-2)}{3!}(\frac{s}{a})^3+...)</tex>.
Если <tex>\alpha</tex> — целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться предыдущей леммой при <tex>a_n=(-1)^n \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!{\alpha}^n}</tex>
<tex>\frac{a_{n+1}}{a_n}=\frac{1}{a} \frac{n-\alpha}{n+1}</tex>
74
правки

Навигация