Изменения

Перейти к: навигация, поиск
м
Нет описания правки
<tex>\left| \ln a_{n+m} - \ln a_n - m \cdot \ln A - (\alpha_1 - \beta_1) \cdot ( \ln {(n+m)} - \ln n) \right| =</tex>
<tex>= \leftBigg| \ln a_{n+m} - \ln a_{n + m - 1} + \ln a_{n + m - 1} - \ldots + \ln a_{n + 1} - \ln a_n - m \cdot \ln A - </tex>
<tex> - (\alpha_1 - \beta_1) \cdot \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} + (\alpha_1 - \beta_1) \cdot \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - (\alpha_1 - \beta_1) \cdot (\ln {(n+m)} - \ln n) \rightBigg| \leqslant</tex>
<tex>\leqslant \left| \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n} \right| + \left| \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n+1} \right| +</tex>
== Примеры ==
'''Пример.''' Для [[Числа Рассмотрим производящую функцию для чисел Каталана <tex>A(s) = 1 + s + 2 \cdot s^2 + 5 \cdot s^3 + \ldots </tex> Возведя ее в квадрат и умножив результат на s, получим <tex>s \cdot A^2(s) = s + 2 \cdot s^2 + 5 \cdot s^3 + 14 \cdot s^4 + \ldots = A(s) - 1</tex>, что дает нам квадратное уравнение на производящую функцию <tex>s \cdot A^2(s) - A(s) + 1 = 0,</tex> откуда <tex>A(s) = \cfrac {1 - \sqrt {1 - 4 \cdot s}}{2 \cdot s}</tex> Второй корень уравнения отбрасывается, так как <tex>\cfrac {1 + \sqrt {1 - 4 \ cdot s}}{2 \cdot s} = \cfrac {1}{s} + \ldots содержит отрицательные степени s</tex> Найденная производящая функция позволяет найти явную форму для чисел Каталана|. Согласно биному Ньютона <tex>a_n = \cfrac {\cfrac {1}{2} \cdot \cfrac {1}{2} \cdot \cfrac {3}{2} \cdot \ldots \cdot \cfrac {2 \cdot n - 1}{2} \cdot 4^{n + 1}}{2 \cdot (n + 1)!},</tex> откуда, умножая на числитель и знаменатель на <tex>n!</tex> и сокращая на <tex>2^{n + 1}</tex>, получаем <tex>a_n = \cfrac {(2 \cdot n)!}{n! \cdot (n + 1)!} = \cfrac {1}{n + 1} \cdot \left( \binom {2 \cdot n}{n}</tex> Последняя формула дает и более простое рекурсивное соотношение для чисел Каталана]] имеем:
<tex>\cfrac{c_{n+1}}{c_n}=\cfrac{4 \cdot n + 2}{n+2}=4 \cdot \cfrac{ n + \cfrac{1}{2}}{n+2}</tex>
74
правки

Навигация