Редактирование: Бустинг, AdaBoost

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 20: Строка 20:
 
Если даны изображения, содержащие различные известные в мире объекты, классификатор может быть обучен на основе них для автоматической классификации объектов в будущих неизвестных изображениях. Простые классификаторы, построенные на основе некоторых признаков изображения объекта, обычно оказываются малоэффективными в классификации. Использование методов бустинга для классификации объектов {{---}} путь объединения слабых классификаторов специальным образом для улучшения общей возможности классификации.
 
Если даны изображения, содержащие различные известные в мире объекты, классификатор может быть обучен на основе них для автоматической классификации объектов в будущих неизвестных изображениях. Простые классификаторы, построенные на основе некоторых признаков изображения объекта, обычно оказываются малоэффективными в классификации. Использование методов бустинга для классификации объектов {{---}} путь объединения слабых классификаторов специальным образом для улучшения общей возможности классификации.
  
Классификация признаков является типичной задачей компьютерного зрения, где определяется, содержит ли изображение некоторую категорию объектов или нет. Идея тесно связана с распознаванием, идентификацией и обнаружением. Классификация по обнаружению объекта обычно содержит выделение [[Общие понятия|признаков]], обучение классификатора и применение классификатора к новым данным. Есть много способов представления категории объектов, например по анализу формы, с помощью модели '''«мешок слов»''', с помощью локальных описателей, таких как '''SIFT'''<ref>[https://en.wikipedia.org/wiki/Scale-invariant_feature_transform Wikipedia {{---}} Scale-invariant feature transform]</ref>, и так далее. Примерами классификаторов с учителем служат наивные [[Байесовская классификация|байесовские классификаторы]]<sup>[на 28.01.19 не создан]</sup>, [[Метод опорных векторов (SVM)|методы опорных векторов]]<sup>[на 28.01.19 не создан]</sup>, смесь гауссиан и [[Нейронные сети, перцептрон|нейронные сети]]. Однако исследования показали, что категории объектов и их положение в изображениях могут быть обнаружены также с помощью обучения без учителя.
+
Классификация признаков является типичной задачей компьютерного зрения, где определяется, содержит ли изображение некоторую категорию объектов или нет. Идея тесно связана с распознаванием, идентификацией и обнаружением. Классификация по обнаружению объекта обычно содержит выделение [[Общие понятия|признаков]], обучение классификатора и применение классификатора к новым данным. Есть много способов представления категории объектов, например по анализу формы, с помощью модели '''«мешок слов»''', с помощью локальных описателей, таких как '''SIFT'''<ref>[https://en.wikipedia.org/wiki/Scale-invariant_feature_transform Wikipedia {{---}} Scale-invariant feature transform]</ref>, и так далее. Примерами классификаторов с учителем служат наивные [[Байесовская классификация|байесовские классификаторы]]<sup>[на 22.01.19 не создан]</sup>, [[Метод опорных векторов (SVM)|методы опорных векторов]]<sup>[на 22.01.19 не создан]</sup>, смесь гауссиан и [[Нейронные сети, перцептрон|нейронные сети]]. Однако исследования показали, что категории объектов и их положение в изображениях могут быть обнаружены также с помощью обучения без учителя.
  
 
===Задача ранжирования выдачи поисковых систем===
 
===Задача ранжирования выдачи поисковых систем===

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: