Редактирование: Быстрая сортировка

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 107: Строка 107:
 
</center>
 
</center>
  
Покажем, почему на данном массиве будет достигаться максимальное время работы быстрой сортировки. На этапе построения мы каждый раз присваивали опорному элементу максимальное значение. Следовательно, при выполнении <tex>\mathrm{quicksort}</tex> алгоритм в качестве опорного всегда будет выбирать наибольший элемент массива (выборка будет производится в том же порядке ввиду детерминированности определения опорного элемента).  
+
Покажем, почему на данном массиве будет достигаться максимальное время работы быстрой сортировки. На этапе построения мы каждый раз присваивали опорному элементу минимальное значение. Следовательно, при выполнении <tex>\mathrm{quicksort}</tex> алгоритм в качестве опорного всегда будет выбирать наибольший элемент массива (выборка будет производится в том же порядке ввиду детерминированности определения опорного элемента).  
 
Таким образом, так как каждый раз массив разбивается на две части {{---}} большие или равные опорному элементы и меньшие его {{---}} на каждом шаге имеем разбиение на массивы длины <tex>1</tex> и <tex>n-1</tex>, чего мы, собственно, и добивались. При таком выполнении алгоритма происходит <tex>\Theta(n^2)</tex> разделений на два подмассива, и на каждом разделении выполняется <tex>\Theta(n^2)</tex> сравнений.  
 
Таким образом, так как каждый раз массив разбивается на две части {{---}} большие или равные опорному элементы и меньшие его {{---}} на каждом шаге имеем разбиение на массивы длины <tex>1</tex> и <tex>n-1</tex>, чего мы, собственно, и добивались. При таком выполнении алгоритма происходит <tex>\Theta(n^2)</tex> разделений на два подмассива, и на каждом разделении выполняется <tex>\Theta(n^2)</tex> сравнений.  
 
Следовательно, на данном массиве быстрая сортировка работает за <tex>\Theta(n^2)</tex>.
 
Следовательно, на данном массиве быстрая сортировка работает за <tex>\Theta(n^2)</tex>.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: