Редактирование: Вариации регрессии
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 55: | Строка 55: | ||
Диагональная матрица <tex>\lambda I_n</tex> называется '''гребнем'''. | Диагональная матрица <tex>\lambda I_n</tex> называется '''гребнем'''. | ||
− | + | ===Пример кода для Scikit-learn=== | |
− | |||
<font color = green># импорт библиотек</font> | <font color = green># импорт библиотек</font> | ||
'''from''' sklearn.datasets '''import''' make_regression | '''from''' sklearn.datasets '''import''' make_regression | ||
Строка 81: | Строка 80: | ||
Точность предсказания для данного датасета и параметров: | Точность предсказания для данного датасета и параметров: | ||
<font color = green>>>></font> 0.8171822749108134 | <font color = green>>>></font> 0.8171822749108134 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Лассо-регрессия== | ==Лассо-регрессия== | ||
+ | ===Описание=== | ||
[[Файл: Ridge_and_Lasso_Regression.png|400px|thumb|Рис.1. Сравнение Лассо- и Ридж- регрессии, пример для двумерного пространства независимых переменных.<br/>Бирюзовые области изображают ограничения на коэффициенты <tex>\beta</tex>, эллипсы {{---}} некоторые значения функции наименьшей квадратичной ошибки.]] | [[Файл: Ridge_and_Lasso_Regression.png|400px|thumb|Рис.1. Сравнение Лассо- и Ридж- регрессии, пример для двумерного пространства независимых переменных.<br/>Бирюзовые области изображают ограничения на коэффициенты <tex>\beta</tex>, эллипсы {{---}} некоторые значения функции наименьшей квадратичной ошибки.]] | ||
Строка 114: | Строка 92: | ||
Основное различие лассо- и ридж-регрессии заключается в том, что первая может приводить к обращению некоторых независимых переменных в ноль, тогда как вторая уменьшает их до значений, близких к нулю. Рассмотрим для простоты двумерное пространство независимых переменных. В случае лассо-регрессии органичение на коэффициенты представляет собой ромб (<tex>|\beta_1| + |\beta_2| \leq t</tex>), в случае ридж-регрессии {{---}} круг (<tex>\beta_1^2 + \beta_2^2 \leq t^2</tex>). Необходимо минимизировать функцию ошибки, но при этом соблюсти ограничения на коэффициенты. С геометрической точки зрения задача состоит в том, чтобы найти точку касания линии, отражающей функцию ошибки с фигурой, отражающей ограничения на <tex>\beta</tex>. Из рисунка 1 интуитивно понятно, что в случае лассо-регрессии эта точка с большой вероятностью будет находиться на углах ромба, то есть лежать на оси, тогда как в случае ридж-регрессии такое происходит очень редко. Если точка пересечения лежит на оси, один из коэффициентов будет равен нулю, а значит, значение соответствующей независимой переменной не будет учитываться. | Основное различие лассо- и ридж-регрессии заключается в том, что первая может приводить к обращению некоторых независимых переменных в ноль, тогда как вторая уменьшает их до значений, близких к нулю. Рассмотрим для простоты двумерное пространство независимых переменных. В случае лассо-регрессии органичение на коэффициенты представляет собой ромб (<tex>|\beta_1| + |\beta_2| \leq t</tex>), в случае ридж-регрессии {{---}} круг (<tex>\beta_1^2 + \beta_2^2 \leq t^2</tex>). Необходимо минимизировать функцию ошибки, но при этом соблюсти ограничения на коэффициенты. С геометрической точки зрения задача состоит в том, чтобы найти точку касания линии, отражающей функцию ошибки с фигурой, отражающей ограничения на <tex>\beta</tex>. Из рисунка 1 интуитивно понятно, что в случае лассо-регрессии эта точка с большой вероятностью будет находиться на углах ромба, то есть лежать на оси, тогда как в случае ридж-регрессии такое происходит очень редко. Если точка пересечения лежит на оси, один из коэффициентов будет равен нулю, а значит, значение соответствующей независимой переменной не будет учитываться. | ||
− | + | ===Пример кода для Scikit-learn=== | |
− | |||
<font color = green># импорт библиотек</font> | <font color = green># импорт библиотек</font> | ||
'''from''' sklearn.datasets '''import''' make_regression | '''from''' sklearn.datasets '''import''' make_regression | ||
Строка 140: | Строка 117: | ||
Точность предсказания для данного датасета и параметров: | Точность предсказания для данного датасета и параметров: | ||
<font color = green>>>></font> 0.8173906804156383 | <font color = green>>>></font> 0.8173906804156383 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Байесовская регрессия== | ==Байесовская регрессия== | ||
Строка 193: | Строка 148: | ||
= \arg\min \sum\limits_{i=1}^n (y_i - x_i \beta)^2</tex> | = \arg\min \sum\limits_{i=1}^n (y_i - x_i \beta)^2</tex> | ||
− | Таким образом, оказывается, что метод максимального правдоподобия с учетом шума в данных сводится к оценке по методу наименьших квадратов, которую мы уже видели в | + | Таким образом, оказывается, что метод максимального правдоподобия с учетом шума в данных сводится к оценке по методу наименьших квадратов, которую мы уже видели в обынчой линейной регрессии. |
===Пример кода для Scikit-learn=== | ===Пример кода для Scikit-learn=== | ||
Строка 222: | Строка 177: | ||
==Логическая регрессия== | ==Логическая регрессия== | ||
− | '''Логическая регрессия''' (англ. ''logic regression'') {{---}} обобщенный метод регрессии, применяемый в основном в случае, когда независимые переменные имеют двоичную природу (при этом зависимая переменная не обязательно двоичная). Задачей логической регрессии является определение независимых переменных, которые могут быть выражены как результат вычисления | + | '''Логическая регрессия''' (англ. ''logic regression'') {{---}} обобщенный метод регрессии, применяемый в основном в случае, когда независимые переменные имеют двоичную природу (при этом зависимая переменная не обязательно двоичная). Задачей логической регрессии является определение независимых переменных, которые могут быть выражены как результат вычисления булевой функции от других независимых переменных. |
+ | |||
Обычно в методах регрессии не учитывается связь между переменными. Предполагается, что влияние каждой переменной на результат не зависит от значений других переменных. Однако это предположение зачастую неверно. | Обычно в методах регрессии не учитывается связь между переменными. Предполагается, что влияние каждой переменной на результат не зависит от значений других переменных. Однако это предположение зачастую неверно. | ||
Пусть <tex>x_1, x_2, \dots, x_k</tex> {{---}} двоичные независимые переменные, и пусть <tex>y</tex> {{---}} зависимая переменная. Будем пытаться натренировать модели регрессии вида <tex>g(E(y)) = b_0 + b_1 L_1 + \dots + b_n L_n</tex>, где <tex>L_j</tex> {{---}} булева функция от переменных <tex>x_i</tex> (например <tex>L_j = (x_2 \lor \overline{x_4}) \land x_7</tex>). | Пусть <tex>x_1, x_2, \dots, x_k</tex> {{---}} двоичные независимые переменные, и пусть <tex>y</tex> {{---}} зависимая переменная. Будем пытаться натренировать модели регрессии вида <tex>g(E(y)) = b_0 + b_1 L_1 + \dots + b_n L_n</tex>, где <tex>L_j</tex> {{---}} булева функция от переменных <tex>x_i</tex> (например <tex>L_j = (x_2 \lor \overline{x_4}) \land x_7</tex>). | ||
+ | |||
Для каждого типа модели необходимо определить функцию, которая отражает качество рассматриваемой модели. Например, для линейной регрессии такой функцией может быть остаточная сумма квадратов. Целью метода логической регрессии является минимизация выбранной функции качества посредством настройки параметров <tex>b_j</tex> одновременно с булевыми выражениями <tex>L_j</tex>. | Для каждого типа модели необходимо определить функцию, которая отражает качество рассматриваемой модели. Например, для линейной регрессии такой функцией может быть остаточная сумма квадратов. Целью метода логической регрессии является минимизация выбранной функции качества посредством настройки параметров <tex>b_j</tex> одновременно с булевыми выражениями <tex>L_j</tex>. | ||
− | + | ==Алгоритм== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[Файл: Logic_tree_moves.jpg|400px|thumb|Рис.3. Допустимые действия в процессе роста дерева.]] | |
==См. также== | ==См. также== |