Изменения

Перейти к: навигация, поиск
Нет описания правки
Пусть <tex>x \notin L</tex>. В этом случае <tex>V(x, c)</tex> вернет <tex>0</tex> и результат работы программы будет зависеть от нечестной монеты. Она вернет <tex>0</tex> с вероятностью <tex>1/2 + \varepsilon > 1/2</tex>.
Пусть <tex>x \in L</tex>. Тогда [[Формула полной вероятности|по формуле полной вероятности]] <tex>\operatorname{P}(p(x) = 1) = p_0 + (1 - p_0) (1/2 - \varepsilon)</tex>, где <tex>p_0</tex> — вероятность угадать правильный сертификат. Заметим, что поскольку все сертификаты имеют полиномиальную длину длина всех сертификатов ограничена некоторым полиномом <tex>s(n), n = |x|</tex> и существует хотя бы один правильный сертификат, <tex>p_0\ge 2^{-s(n)}</tex> не более чем экспоненциально мала. Найдем <tex>\varepsilon</tex> из неравенства <tex>\operatorname{P}(p(x) = 1) > 1/2</tex>:
<tex>p_0 + 1/2 - \varepsilon - p_0 / 2 + p_0 \varepsilon > 1/2</tex>;
<tex>\varepsilon < \frac{p_0}{2 (1 - p_0)}</tex>.
Достаточно взять <tex>\varepsilon < \le p_0 / 2</tex>. Из сделанного выше замечания следует, что работу функции ''infair_coin''() можно смоделировать с помощью полиномиального количества не более чем <tex>s(n) + 1</tex> вызовов ''random''(). Таким образом, мы построили программу <tex>q</tex>, удовлетворяющую ограничениям класса <tex>\mathrm{PP}</tex>.
3. <tex>\mathrm{PP} \subset \mathrm{PS}</tex>. Пусть <tex>p</tex> — программа для языка <tex>L \in \mathrm{PP}</tex>. Она используют не более чем полиномиальное количество вероятностных бит, так как сама работает за полиномиальное время. Тогда программа для <tex>\mathrm{PS}</tex> будет перебирать все участки вероятностных лент нужной полиномиальной длины и запускать на них <tex>p</tex>. Ответом будет <tex>0</tex> или <tex>1</tex> в зависимости от того, каких ответов <tex>p</tex> оказалось больше.
322
правки

Навигация