Редактирование: Верхние и нижние оценки хроматического числа

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 5: Строка 5:
 
|proof=
 
|proof=
 
Опишем на графе следующий алгоритм раскраски:
 
Опишем на графе следующий алгоритм раскраски:
*Из произвольной вершины <tex>v</tex> запустим алгоритм поиска в глубину. Пусть <tex>T</tex> {{---}} дерево обхода глубина графа <tex>G</tex> с корнем в вершине <tex>v</tex>.
+
*Из произвольной вершины <tex>v</tex> запусти алгоритм поиска в глубину. Пусть <tex>T</tex> {{---}} дерево обхода глубина графа <tex>G</tex> с корнем в вершине <tex>v</tex>.
*Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \bmod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>.
+
*Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \mod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>.
 
Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен.
 
Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен.
Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины <tex> a, b </tex> одного цвета. Пусть <tex>color(v)</tex> {{---}} цвет вершины после выполнения алгоритма раскраски. Заметим, что для произвольной вершины графа <tex>p</tex>, <tex>dist(v,p) = color(p) + n(\Delta + 1)</tex> , <tex>n \geqslant 0 </tex>. Тогда, <tex>dist(v,a) - dist(v,b) = k(\Delta + 1)</tex>. Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то <tex> k \geqslant 1</tex>. То есть, вершины <tex>a, b</tex> лежат на простом цикле длины по крайней мере <tex>\Delta + 2</tex>. Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем <tex>\Delta</tex>.
+
Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины <tex> a,b </tex> одного цвета.Пусть <tex>color(v)</tex> {{---}} цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа <tex>p</tex>, <tex>dist(v,p) = color(p) + n(\Delta + 1)</tex> , <tex>n \geqslant 0 </tex>.Тогда, <tex>dist(v,a) - dist(v,b) = k(\Delta + 1)</tex>.Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то <tex> k \geqslant 1</tex>. То есть, вершины <tex>a,b</tex> лежат на простом цикле длины по крайней мере <tex>\Delta + 2</tex>. Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем <tex>\Delta</tex>.
 
Таким образом в графе <tex>G</tex> после выполнения алгоритма раскраски  нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из <tex>\Delta + 1</tex>, то есть <tex>G</tex> правильно раскрашен в <tex>\Delta + 1</tex> цвет, следовательно <tex>\chi(G) \leqslant \Delta(G) + 1</tex>
 
Таким образом в графе <tex>G</tex> после выполнения алгоритма раскраски  нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из <tex>\Delta + 1</tex>, то есть <tex>G</tex> правильно раскрашен в <tex>\Delta + 1</tex> цвет, следовательно <tex>\chi(G) \leqslant \Delta(G) + 1</tex>
 
   
 
   
  
 
}}
 
}}
 
 
==Нижняя оценка числом независимости ==
 
==Нижняя оценка числом независимости ==
 
{{Определение
 
{{Определение
Строка 24: Строка 23:
 
 
 
 
 
|definition=
 
|definition=
'''Число независимости''' <tex>\alpha(G)</tex> графа <tex>G(V,E)</tex> {{---}} <tex>\max \{|S|:S \in V</tex> и <tex>S</tex> независимо в G<tex>\}</tex>
+
'''Число независимости''' <tex>\alpha(G)</tex> графа <tex>G(V,E)</tex> {{---}} <tex>\max \{|S|:S \in V</tex> и S независимо в G<tex>\}</tex>
 
}}
 
}}
 
{{Лемма  
 
{{Лемма  
Строка 37: Строка 36:
 
{{Лемма  
 
{{Лемма  
 
|about = верхняя оценка
 
|about = верхняя оценка
|statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с  <tex>m</tex> ребрами.Тогда, <tex>\chi(G) \leqslant \dfrac{1}{2} +\sqrt{2m + \dfrac{1}{4}}</tex>.  
+
|statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с  <tex>m</tex> ребрами.Тогда, <tex>\chi(G) \leqslant \frac{1}{2} +\sqrt{2m + \frac{1}{4}}</tex>.  
 
|proof=
 
|proof=
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет).
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет).
Тогда, <tex>\dfrac{1}{2}\chi(\chi-1) \leqslant m \Rightarrow (\chi - \dfrac{1}{2})^2 \leqslant 2m + \dfrac{1}{4} \Rightarrow \chi(G) \leqslant \dfrac{1}{2} +\sqrt{2m + \dfrac{1}{4}} </tex>.
+
Тогда, <tex>\frac{1}{2}\chi(\chi-1) \leqslant m \Rightarrow (\chi - \frac{1}{2})^2 \leqslant 2m + \frac{1}{4} \Rightarrow \chi(G) \leqslant \frac{1}{2} +\sqrt{2m + \frac{1}{4}} </tex>.
 
}}
 
}}
 
 
== Нижняя оценка количеством ребер и количеством вершин ==
 
== Нижняя оценка количеством ребер и количеством вершин ==
 
{{Лемма  
 
{{Лемма  
 
|about = нижняя оценка Геллера
 
|about = нижняя оценка Геллера
|statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с <tex>n</tex> вершинами и <tex>m</tex> ребрами. Тогда, <tex>\dfrac{n^2}{n^2 - 2m} \leqslant \chi(G) </tex>.  
+
|statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с <tex>n</tex> вершинами и <tex>m</tex> ребрами .Тогда,   <tex>\frac{n^2}{n^2 - 2m} \leqslant \chi(G) </tex>.  
 
|proof=
 
|proof=
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>.
 
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>.
<tex>m \leqslant \dfrac{1}{2}n(n - 1) - \dfrac{1}{2}\sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1) \Rightarrow \dfrac{n^2}{n^2 - 2m} \leqslant \dfrac{n^2}{n^2 -n(n - 1) + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} =  \dfrac{n^2}{n + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} =  \dfrac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i| + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \dfrac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} = \dfrac{(\sum\limits^{\chi}_{i = 1}|V_i|)^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} \leqslant \chi</tex>.
+
<tex>m \leqslant \frac{1}{2}n(n - 1) - \frac{1}{2}\sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1) \Rightarrow \frac{n^2}{n^2 - 2m} \leqslant \frac{n^2}{n^2 -n(n - 1) + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} =  \frac{n^2}{n + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} =  \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i| + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \frac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} = \frac{(\sum\limits^{\chi}_{i = 1}|V_i|)^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} \leqslant \chi</tex>.
 
}}
 
}}
 
+
==Смотри так же==
==См. также==
 
 
*[[Хроматическое_число_планарного_графа|Хроматическое число планарного графа]]
 
*[[Хроматическое_число_планарного_графа|Хроматическое число планарного графа]]
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: