Изменения

Перейти к: навигация, поиск

Вписывание части изображения

50 байт добавлено, 01:04, 12 января 2021
Нет описания правки
=== Свертки ===
Для вписывания изображения помимо классической свертки широко используются другие способы перехода от слоя к слою. Подробнее про свертки можно прочитать в конспекте [[Сверточные нейронные сети]].
# '''Расширенная свертка (англ. Dilated convolution)'''. Данный способ позволяет сохранить качество изображении, уменьшив затраты на память и вычисления.
# '''Частичная свертка (англ. Partial convolution).''' Данная свертка дает лучшее качество на масках произвольной формы. Классическая свертка предполагает, что все пиксели валидны, а частичная учитывает количество стертых пикселей в рассматриваемой матрице.
<center><tex>L_{per-pixel} = \frac{1}{N_{I_{gt}}}\|M \odot (I_{gen} - I_{gt})\| + \alpha \frac{1}{N_{I_{gt}}}\|(1 - M) \odot (I_{gen} - I_{gt})\|</tex>,</center>
:где <tex>I_{gen}</tex> {{---}} выход генератора; <tex>I_{gt}</tex> {{---}} оригинальное изображение (англ. ground truth); <tex>N_a</tex> {{---}} количество элементов в объекте <tex>a</tex>; <tex>M</tex> {{---}} бинарная маска; <tex>\alpha</tex> {{---}} гиперпараметр, <tex>\odot</tex> {{---}} поэлементное перемножение.
* '''Perceptual loss'''. Cравнивает признаки сгенерированного и исходного изображений, полученные с помощью модели VGG-16<ref>[https://arxiv.org/pdf/1409.1556v6.pdf Very Deep Convolutional Networks for Large-Scale Image Recognition, Karen Simonyan, Andrew Zisserman]</ref>.
<center><tex>L_{percept} = \sum\limits_{q}\frac{\|\Theta_{q}(I_{gen}) - \Theta_{q}(I_{gt})\|}{N_{\Theta_{q}(I_{gt})}} + \sum\limits_{q}\frac{\|\Theta_{q}(I_{comp}) - \Theta_{q}(I_{gt})\|}{N_{\Theta_{q}(I_{gt})}}</tex>,</center>
:где <tex>I_{comp}</tex> {{---}} изображение <tex>I_{gen}</tex>, в котором нестертые части заменены на части из <tex>I_{gt}</tex>; <tex>\Theta_{q}(x)</tex> {{---}} карта признаков, полученная <tex>q</tex>-ым слоем VGG-16.
* '''Style loss'''. Считает корреляцию между признаками на каждом слое, что на самом деле является матрицей Грама<ref>[https://en.wikipedia.org/wiki/Gramian_matrix Gramian matrix, Wikipedia]</ref>. Согласно алгоритму [[Neural Style Transfer|нейронного переноса стиля (англ. Neural Style Transfer, NST)]] матрица Грама содержит информацию о текстуре и цвете изображения. Таким образом style loss сравнивает сгенерированное и оригинальное изображения на схожесть стилей.
<center><tex>L_{style} = \sum\limits_{q}\frac{1}{C_q C_q} \| \frac{G_q(I_{gen})-G_q(I_{gt})}{N_q}\|</tex>,</center>
:где <tex>G_q(x) = (\Theta_{q}(I_{x}))^T (\Theta_{q}(I_{x}))</tex> {{---}} матрица Грама для выполнения автокорреляции на карте признаков VGG-16; <tex>C_{q}</tex> {{---}} размерность матрицы Грама.
* '''Total variation loss'''. Оценивает однородность полученного изображения.
<center><tex>L_{tv} = \sum\limits_{(i,j) \in R}\frac{\|I_{comp}^{i,j+1} - I_{comp}^{i,j}\|}{N_{I_{comp}}} + \sum\limits_{(i,j) \in R}\frac{\|I_{comp}^{i+1,j} - I_{comp}^{i,j}\|}{N_{I_{comp}}}</tex>,</center>
:где <tex>I_{comp}</tex> {{---}} изображение <tex>I_{gen}</tex>, в котором нестертые части заменены на части из <tex>I_{gt}</tex>; <tex>N_{I_{comp}}</tex> {{---}} количество пикселей в <tex>I_{comp}</tex>
* '''Adversarial loss'''. Сравнивает генерируемые и оригинальные границы объектов в изображении.
<center><tex>L_{adv} = \mathbb{E}[\log D(H_{gt}, I_{gray})] + \mathbb{E}[\log (1 - D(H_{gen}, I_{gray}))]</tex>,</center>
:где <tex>I_{gray}</tex> {{---}} черно-белое оригинальное изображение; <tex>H_{gt}</tex> {{---}} границы объектов оригинального изображения; <tex>H_{gen}</tex> {{---}} генерируемые границы; <tex>D</tex> {{---}} дискриминатор;
* '''Feature-matching loss'''. Сравнивает изображения по признакам, извлекаемыми из всех слоев дискриминатора.
<center><tex>L_{FM} = \mathbb{E}[\sum\limits_{i=1}^L \frac{1}{N_i} \|D^{(i)}(H_{gt} - D^{(i)}(H_{gen}))\| ]</tex>,</center>
:где <tex>L</tex> {{---}} количество слоев дискриминатора; <tex>N_i</tex> {{---}} число нейронов на <tex>i</tex>-ом слое дискриминатора; <tex>D^{(i)}</tex> {{---}} значения дискриминатора на слое <tex>i</tex>;
При обучении обычно используется комбинация функций потерь с некоторыми весами, которые являются гиперпараметрами. В моделях, где вдобавок используется дискриминатор, функция потерь от его выхода также подмешивается к итоговой функции потерь.
<tex>\theta^{*} = \underset{\theta} {\mathrm{argmin}} ~E(f_{\theta}(z), x_0), \;\; x^{*} = f_{\theta^{*}}(z) \;\; (1)</tex>
где <tex>E(x, x_0)</tex> {{---}} это функция потерь, зависящая от решаемой задачи, а <tex>f_{\theta}(z)</tex> {{---}} некоторая сверточная сеть.
Алгоритм решения задачи (см Рис. 9):
Анонимный участник

Навигация