Редактирование: Выброс

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
[[Файл:Outlier_boxplot.png|upright=1.0|thumb|Рис 1.График boxplot населения регионов России в 1990 году, где можно заметить 5 выбросов]]
 
[[Файл:Outlier_boxplot.png|upright=1.0|thumb|Рис 1.График boxplot населения регионов России в 1990 году, где можно заметить 5 выбросов]]
'''Выброс''' (англ. ''outlier'') {{---}} это экстремальные значения во входных данных, которые находятся далеко за пределами других наблюдений. Например, все предметы на кухне имеют температуру около 22-25 грудусов Цельсия, а {{---}} духовка 220.
+
'''Выброс''' (англ. ''outlier'') {{---}} небольшая доля объектов во входных данных, которая сильно выделяется из общей выборки. Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений признаков обрабатываемых объектов. Соответственно, выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, к снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных.
 
 
Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений признаков обрабатываемых объектов. Соответственно, выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, к снижению результатов. Даже до подготовки предсказательных моделей на основе обучающих данных выбросы могут приводить к ошибочным представлениям и в дальнейшем к ошибочной интерпретации собранных данных.
 
 
===Виды выбросов===
 
===Виды выбросов===
На основе размерности изучаемого массива данных выбросы подразделяют на одномерные и многомерные.
+
Выбросы могут быть двух видов: одномерные и многомерные. Одномерные выбросы можно найти при рассмотрении распределения значений объектов в одномерном пространстве. Многомерные выбросы можно найти в <tex>n</tex>-мерном пространстве (из <tex>n</tex> объектов). Рассмотрение распределений в <tex>n</tex>-мерных пространствах может быть очень сложным для человеческого мозга, поэтому необходимо обучить модель, чтобы сделать это.
;Одномерные выбросы
 
:Точка является выбросом только по одной из своих координат.
 
;Многомерные выбросы
 
:Точка является выбросом сразу по нескольким координатам.
 
  
Другой подход классификации выбросов {{---}} по их окружению.
+
Выбросы также могут отличаться в зависимости от окружающей среды: точечные выбросы, контекстуальные выбросы или коллективные выбросы. Точечные выбросы {{---}}  
;Точечные выбросы
+
единичные точки данных, расположенные далеко от остальной части распределения. Контекстные выбросы могут представлять собой шум в данных, например, знаки препинания при выполнении анализа текста или сигнал фонового шума при распознавании речи. Коллективные выбросы могут быть подмножествами новшеств в данных, таких как сигнал, который может указывать на открытие новых явлений.
:Единичные точки, выбивающиеся из общей картины. Точечные аномалии часто используются в системах контроля транзакций для выявления мошенничества, например, когда с украденной карты совершается крупная покупка.
 
;Контекстуальные выбросы
 
:Для того, чтобы определить, является ли точка выбросом необходим контекст. Например, в Петербурге +15 градусов Цельсия. Зимой такая температура является выбросом, а летом нет.
 
;Коллективные выбросы
 
:Здесь выбросом является не точка, а группа точек. Примером таких выбросов могут служить, например, задержки поставок на фабрике. Одна задержка не является выбросом. Но если их много, значит это может стать проблемой.
 
  
 
===Причины возникновения выбросов===
 
===Причины возникновения выбросов===
Строка 50: Строка 39:
  
 
===Локально взвешенное сглаживание===
 
===Локально взвешенное сглаживание===
Локально взвешенное сглаживание (англ. ''LOcally WEighted Scatter plot Smoothing'', ''LOWESS'')<ref>[http://www.aliquote.org/cours/2012_biomed/biblio/Cleveland1979.pdf Локально взвешенное сглаживание]</ref>. Данная методика была предложена Кливлендом (Cleveland) в 1979 году для моделирования и сглаживания двумерных данных <math>X^m={(x_i, y_i)}_{i=1}^m</math>. Эта техника предоставляет общий и гибкий подход для приближения двумерных данных. Локально-линейная модель может быть записана в виде: <math>y_t=\alpha_t+\beta_t x_t + \varepsilon_t</math>. Эта модель может быть расширена на случай локально-квадратичной зависимости и на модель с большим числом независимых переменных. Параметры <math>\alpha_t</math> и <math>\beta_t</math> локально линейной модели оцениваются с помощью локально взвешенной регрессии, которая присваивает объекту тем больший вес, чем более близок он к объекту t. Степень сглаживания определяется параметром сглаживания <math>f</math>, который выбирает пользователь. Параметр <math>f</math> указывает какая доля (англ. ''fraction'') данных используется в процедуре. Если <math>f = 0.5</math>, то только половина данных используется для оценки и влияет на результат, и тогда мы получим умеренное сглаживание. С другой стороны, если <math>f = 0.8</math>, то используются восемьдесят процентов данных, и сглаживание намного сильнее. Во всех случаях веса данных тем больше, чем они ближе к объекту <math>t</math>.
+
Локально взвешенное сглаживание (англ. ''LOcally WEighted Scatter plot Smoothing'', ''LOWESS'')<ref>[http://www.aliquote.org/cours/2012_biomed/biblio/Cleveland1979.pdf Локально взвешенное сглаживание]</ref>. Данная методика была предложена Кливлендом (Cleveland) в 1979 году для моделирования и сглаживания двумерных данных <math>X^m={(x_i, y_i)}_{i=1}^m</math>. Эта техника предоставляет общий и гибкий подход для приближения двумерных данных. Локально-линейная модель может быть записана в виде: <math>y_t=\alpha_t+\beta_t x_t + \varepsilon_t</math>. Эта модель может быть расширена на случай локально-квадратичной зависимости и на модель с бо‘льшим числом независимых переменных. Параметры <math>\alpha_t</math> и <math>\beta_t</math> локально линейной модели оцениваются с помощью локально взвешенной регрессии, которая присваивает объекту тем больший вес, чем более близок он к объекту t. Степень сглаживания определяется параметром сглаживания <math>f</math>, который выбирает пользователь. Параметр <math>f</math> указывает какая доля (англ. ''fraction'') данных используется в процедуре. Если <math>f = 0.5</math>, то только половина данных используется для оценки и влияет на результат, и тогда мы получим умеренное сглаживание. С другой стороны, если <math>f = 0.8</math>, то используются восемьдесят процентов данных, и сглаживание намного сильнее. Во всех случаях веса данных тем больше, чем они ближе к объекту <math>t</math>.
 
====Постановка задачи====
 
====Постановка задачи====
 
Пусть задано пространство объектов $X$ и множество возможных ответов <math>Y = \mathbb{R}</math>. Существует неизвестная зависимость <math>y^*\colon X \to Y</math>, значения которой известны только на объектах обучающией выборки <math>X^l = (x_i\ ,\ y_i)^l_{i=1},\ y_i = y^*(x_i)</math>. Требуется построить алгоритм <math>a\colon X\to Y</math>, аппроксимирующий неизвестную зависимость <math>y^*</math>. Предполагается, что на множестве $X$ задана метрика <math>\rho(x,x')</math>.
 
Пусть задано пространство объектов $X$ и множество возможных ответов <math>Y = \mathbb{R}</math>. Существует неизвестная зависимость <math>y^*\colon X \to Y</math>, значения которой известны только на объектах обучающией выборки <math>X^l = (x_i\ ,\ y_i)^l_{i=1},\ y_i = y^*(x_i)</math>. Требуется построить алгоритм <math>a\colon X\to Y</math>, аппроксимирующий неизвестную зависимость <math>y^*</math>. Предполагается, что на множестве $X$ задана метрика <math>\rho(x,x')</math>.
Строка 72: Строка 61:
 
Чем больше величина невязки <math>\varepsilon_i = \left | a_h\left (x_i;X^\ell\backslash\left \{x_i\right \} \right )-y_i\right |</math>, тем меньше должен быть вес i-го объекта <math>\omega_i(x)</math>.
 
Чем больше величина невязки <math>\varepsilon_i = \left | a_h\left (x_i;X^\ell\backslash\left \{x_i\right \} \right )-y_i\right |</math>, тем меньше должен быть вес i-го объекта <math>\omega_i(x)</math>.
 
====Эвристика====
 
====Эвристика====
Домножить веса <math>\omega_i(x)</math> на коэффициенты <math>\gamma_i = \widetilde{K}\left ( \varepsilon_i \right )</math>, где <math>\widetilde{K}\left ( \varepsilon \right )</math> — ещё одно ядро, вообще говоря, отличное от <math>K\left ( \rho \right )</math>.
+
Домножить веса <math>\omega_i(x)</math> на коэффиценты <math>\gamma_i = \widetilde{K}\left ( \varepsilon_i \right )</math>, где <math>\widetilde{K}\left ( \varepsilon \right )</math> — ещё одно ядро, вообще говоря, отличное от <math>K\left ( \rho \right )</math>.
  
 
====Псевдокод====
 
====Псевдокод====
Строка 114: Строка 103:
 
В статистике методы, устойчивые к нарушениям модельных предположений о данных, называются ''робастными''. Метод локально взвешенного сглаживания относится к ''робастным'' методам, так как он устойчив к наличию небольшого количества выбросов.  
 
В статистике методы, устойчивые к нарушениям модельных предположений о данных, называются ''робастными''. Метод локально взвешенного сглаживания относится к ''робастным'' методам, так как он устойчив к наличию небольшого количества выбросов.  
 
* [[Дерево решений и случайный лес|Дерево принятия решения]] (англ. ''decision tree''<ref>[https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B9 Дерево принятия решения]</ref>). Это дерево, как и уже описанный алгоритм локально взвешенного сглаживания, относится к ''робастным'' методам;
 
* [[Дерево решений и случайный лес|Дерево принятия решения]] (англ. ''decision tree''<ref>[https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B9 Дерево принятия решения]</ref>). Это дерево, как и уже описанный алгоритм локально взвешенного сглаживания, относится к ''робастным'' методам;
* [[Вариации регрессии|Робастная регрессия]] (англ. ''robust regression''<ref>[https://en.wikipedia.org/wiki/Robust_regression Робастная регрессия]</ref>). В отличие от регрессии, использующей, например, метод наименьших квадратов, в этом алгоритме не строится идеализированное предположение, что вектор ошибок <math>\varepsilon</math> распределен согласно нормальному закону. Однако на практике зачастую имеют место отклонения от этого предположения. Тогда можно применить метод наименьших модулей (англ. ''Least Absolute Deviation, LAD ''<ref>[https://en.wikipedia.org/wiki/Least_absolute_deviations Метод наименьших модулей]</ref>) в случае, если распределение ошибок измерений подчиняется распределению Лапласа (англ. Laplace distribution <ref>[https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%9B%D0%B0%D0%BF%D0%BB%D0%B0%D1%81%D0%B0 Распределение Лапласа]</ref>).
+
* [[Вариации регрессии|Робастная регрессия]] (англ. ''robust regression''<ref>[https://en.wikipedia.org/wiki/Robust_regression Робастная регрессия]</ref>). В отличии от регрессии, использующей, например, метод наименьших квадратов, в этом алгоритме не строится идеализированное предположение, что вектор ошибок <math>\varepsilon</math> распределен согласно нормальному закону. Однако на практике зачастую имеют место отклонения от этого предположения. Тогда можно применить метод наименьших модулей (англ. ''Least Absolute Deviation, LAD ''<ref>[https://en.wikipedia.org/wiki/Least_absolute_deviations Метод наименьших модулей]</ref>) в случае, если распределение ошибок измерений подчиняется распределению Лапласа (англ. Laplace distribution <ref>[https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%9B%D0%B0%D0%BF%D0%BB%D0%B0%D1%81%D0%B0 Распределение Лапласа]</ref>).
  
 
==См.также==
 
==См.также==
Строка 126: Строка 115:
 
# https://machinelearningmastery.com/how-to-identify-outliers-in-your-data/
 
# https://machinelearningmastery.com/how-to-identify-outliers-in-your-data/
 
# https://ru.coursera.org/lecture/vvedenie-mashinnoe-obuchenie/obnaruzhieniie-vybrosov-t9PG4
 
# https://ru.coursera.org/lecture/vvedenie-mashinnoe-obuchenie/obnaruzhieniie-vybrosov-t9PG4
# https://www.reg.ru/blog/ishchem-anomalii-s-python-chast-1/
 
 
 
[[Категория: Машинное обучение]]
 
[[Категория: Машинное обучение]]
 
[[Категория: Статистика]]
 
[[Категория: Статистика]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: