Редактирование: Выпуклая оболочка в n-мерном пространстве

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 5: Строка 5:
 
Выберем любые две точки <tex>p_1</tex> и <tex>p_2</tex>. Далее из оставшихся выберем точку <tex>p_3</tex>, которая не лежит на прямой, образованной точками <tex>p_1</tex> и <tex>p_2</tex>. После этого выберем точку <tex>p_4</tex>, которая не лежит на плоскости, образованной точками <tex>p_1, p_2</tex> и <tex>p_3</tex>. Если этого сделать не получилось, то запустим алгоритм для поиска выпуклой оболочки на плоскости.
 
Выберем любые две точки <tex>p_1</tex> и <tex>p_2</tex>. Далее из оставшихся выберем точку <tex>p_3</tex>, которая не лежит на прямой, образованной точками <tex>p_1</tex> и <tex>p_2</tex>. После этого выберем точку <tex>p_4</tex>, которая не лежит на плоскости, образованной точками <tex>p_1, p_2</tex> и <tex>p_3</tex>. Если этого сделать не получилось, то запустим алгоритм для поиска выпуклой оболочки на плоскости.
  
Так мы получили тетраэдр <tex>p_1 p_2 p_3 p_4</tex>, который является выпуклой оболочкой этих четырёх точек. Сделаем random shuffle оставшихся точек <tex>p_5, ..., p_n</tex> и будем добавлять их по одной в выпуклую оболочку. Если <tex>p_i</tex> внутри или на границах выпуклой оболочки, то выпуклая оболочка не меняется на этом шаге. Иначе из имеющейся выпуклой оболочки надо удалить все видимые из данной точки грани и добавить новые — из точки до каждого ребра, образующего horizon (см. картинки; на них белые грани видны из точки <tex>p_r</tex>). После этого нужно смержить соседние грани, которые получились компланарными.
+
Так мы получили тетраэдр <tex>p_1 p_2 p_3 p_4</tex>, который является выпуклой оболочкой этих четырёх точек. Сделаем random shuffle оставшихся точек <tex>p_5, ..., p_n</tex> и будем добавлять их по одной в выпуклую оболочку. Если <tex>p_i</tex> внутри или на границах выпуклой оболочки, то выпуклая оболочка не меняется на этом шаге. Иначе из имеющейся выпуклой оболочки надо удалить все видимые из данной точки грани и добавить новые — из точки до каждого ребра, образующего horizon (см. картинки; на них белые грани видны из точки <tex>p_r</tex>). После этого нужно смержить соседние грани, которые получились копланарными.
  
 
[[Файл:3dconvexhullhorizon.png]] [[Файл:3dconvexhulladd.png]]
 
[[Файл:3dconvexhullhorizon.png]] [[Файл:3dconvexhulladd.png]]
Строка 14: Строка 14:
 
Для выяснения, какие грани видны из точки, будем хранить двудольный граф <tex>G</tex>, называемый conflict graph, в одной доле которого будут точки, которые ещё не добавлены в выпуклую оболочку, а в другой — имеющиеся на данный момент грани выпуклой оболочки. Ребро между точкой <tex>p</tex> и гранью <tex>f</tex> в этом графе означает, что из <tex>p</tex> видна <tex>f</tex>, то есть они находятся в конфликте (in conflict): они не могут сосуществовать в выпуклой оболочке.
 
Для выяснения, какие грани видны из точки, будем хранить двудольный граф <tex>G</tex>, называемый conflict graph, в одной доле которого будут точки, которые ещё не добавлены в выпуклую оболочку, а в другой — имеющиеся на данный момент грани выпуклой оболочки. Ребро между точкой <tex>p</tex> и гранью <tex>f</tex> в этом графе означает, что из <tex>p</tex> видна <tex>f</tex>, то есть они находятся в конфликте (in conflict): они не могут сосуществовать в выпуклой оболочке.
  
Инициализация графа для тетраэдра тривиальна: для каждой точки определяем, какие грани видны из неё. Далее на каждом шаге после добавления точки <tex>p_r</tex> удалим из графа соответствующие удаляемым из выпуклой оболочки граням вершины и инцидентные им рёбра: просто удаляем все достижимые из <tex>p_r</tex> вершины. Также удалим вершину, соответствующую <tex>p_r</tex>. Далее добавляем новые грани выпуклой оболочки. Необходимо найти их конфликты. Сами грани представляют из себя треугольники, если, конечно, они не были смержены с уже имеющимися гранями. Во втором случае новая грань находится в конфликте с теми же точками, что и старая грань, т.к. смерженные грани компланарны.
+
Инициализация графа для тетраэдра тривиальна: для каждой точки определяем, какие грани видны из неё. Далее на каждом шаге после добавления точки <tex>p_r</tex> удалим из графа соответствующие удаляемым из выпуклой оболочки граням вершины и инцидентные им рёбра: просто удаляем все достижимые из <tex>p_r</tex> вершины. Также удалим вершину, соответствующую <tex>p_r</tex>. Далее добавляем новые грани выпуклой оболочки. Необходимо найти их конфликты. Сами грани представляют из себя треугольники, если, конечно, они не были смержены с уже имеющимися гранями. Во втором случае новая грань находится в конфликте с теми же точками, что и старая грань, т.к. смерженные грани копланарны.
  
 
[[Файл:3dconvexhullconflictlist.png|200px|thumb|left]]
 
[[Файл:3dconvexhullconflictlist.png|200px|thumb|left]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: