Редактирование: Вычисление порядка элемента в группе

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
== Постановка задачи ==
+
{{В разработке}}
Пусть <tex>G</tex> — [[группа]], <tex>a \in G</tex>. Требуется найти [[порядок элемента]] <tex>a</tex>.
 
  
== Решение ==
+
Рассмотрим конечную группу <math>G</math>. Для заданного <math>a</math> необходимо найти такое минимальное <math>n</math>, что <math>a^n=e</math>. <br>
По следствию из [[теорема Лагранжа|теоремы Лагранжа]] порядок элемента является делителем [[порядок группы|порядка группы]].  
+
Теперь рассмотрим '''обобщенную задачу поиска порядка''', также называемую '''задачей дискретного логарифмирования''': для заданных <math>a</math> и <math>b</math> из группы найти такое минимальное <math>n</math>, что <math>a ^ n = b</math>. <br>
Таким образом достаточно рассмотреть <tex>a^n</tex>, где <tex>n \in X</tex>, <tex>X</tex> — делители порядка группы.
+
Очевидно, <math>n < |G| </math> (следует из принципа Дирихле). Пусть <math>m = \lceil |G| \rceil</math>. Будем искать <math>n</math> в виде <math>xm-y</math>, где <math>y \in 0 \dots m - 1</math> и <math>x \in 1 \dots m</math>.<br>
 +
<math>a ^ n = a ^ {xm - y} = b</math> <br>
 +
<math>a ^ {xm} = b a ^ {y}</math> <br>
 +
<math> {a ^ m} ^ x = b a ^ y </math> <br>
  
=== Алгоритм ===
+
Далее мы выписываем все полученные выражения для левой и правой частей при всех допустимых <math>x</math> и <math>y</math> (или складываем в удобную структуру данных: отсортированный массив, хеш, дерево и т. д.). После чего ищем пересечение. Для каждого элемента одной части поиск в структуре данных для другой части (в случае с отсортированным массивом) занимает время <math>O(log |G|)</math>. Учитывая, что время на предварительную обработку <math>O(|G|)</math>, общее время работы алгоритма − <math>O(|G| log |G|)</math>.
# Найти все делители <tex>|G|</tex> перебором от 1 до <tex>\sqrt{|G|}</tex>
 
# Для каждого делителя <tex>n</tex> проверить значение <tex>a^n</tex>. Наименьший <tex>n</tex>, такой что <tex>a^n = e</tex>, является порядком элемента <tex>a</tex> в группе.
 
 
 
=== Алгоритмическая сложность ===
 
Перебор от <tex>1</tex> до <tex>\sqrt{|G|}</tex> выполняется за <tex>O(\sqrt{|G|})</tex>. Возведение <tex>a</tex> в степень <tex>n</tex> выполняется за <tex>O(\log n)</tex>. Следовательно время выполнения <tex>O(\sqrt{|G|} \cdot \log{|G|})</tex>.
 
 
 
[[Категория:Теория групп]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)